PDF(4478 KB)
PDF(4478 KB)
PDF(4478 KB)
气象因子动态自适应的短期负荷预测方法
Short-Term Load Forecasting Method Based on Dynamic Adaptation of Meteorological Factors
在加快构建新型电力系统背景下,提升负荷预测精度是保障电力系统经济、安全、稳定运行的重要措施,也是推动智能电网发展的关键所在。为增强对地区负荷的预测能力,提出一种气象影响因子动态自适应的短期负荷预测方法。首先,建立了基于并行多尺度时域卷积神经网络的负荷/气象信息融合模块,挖掘历史负荷与区域天气预报的多时间周期的变化模式;然后,提出了基于深度门控残差神经网络的气象因子动态辨识模块,通过动态调整特征贡献度并优化特征选择,增强对不同时空尺度特征权重的融合,提升模型对关键特征的提取能力;最后,以京津冀某区域的负荷数据进行算例分析,证明所提区域负荷预测方法具有更高的预测精度,对区域负荷的趋势性变化有较好的追踪效果。
In the context of accelerating the construction of a new power system, improving the accuracy of load forecasting is an important measure to ensure the economic, safe and stable operation of the power system, and it is also the key to promote the development of smart grid. In order to enhance the ability of regional load forecasting, a short-term load forecasting method based on dynamic adaptive meteorological impact factors is proposed. Firstly, a load/meteorological information fusion module based on parallel multi-scale temporal convolutional neural networks is employed to mine the multi-time period change model of historical load and regional weather forecast. Then, a dynamic identification module of meteorological factors based on depth-gated residual neural network is proposed. By dynamically adjusting the feature contribution and optimizing the feature selection, the fusion of feature weights of different spatio-temporal scales is enhanced, and the ability of the model to extract key features is improved. Finally, the load data of a region in Beijing, Tianjin and Hebei are used as an example to prove that the proposed regional load forecasting method has higher forecasting accuracy and better tracking effect on regional load trend changes.
负荷预测 / 区域负荷 / 深度学习 / 数据融合 / 数值天气预报
load forecasting / regional load / deep learning / data fusion / numerical weather prediction
| [1] |
张勋奎. 以新能源为主体的新型电力系统发展路线图[J]. 分布式能源,2021, 6(6): 1-8.
|
| [2] |
胡博,谢开贵,邵常政,等. 双碳目标下新型电力系统风险评述:特征、指标及评估方法[J]. 电力系统自动化,2023, 47(5): 1-15.
|
| [3] |
郭峰,王悦,陆鑫,等. 含高比例风电的新型电力系统的经济运行及储能配置[J]. 智慧电力,2023, 51(11): 76-82.
|
| [4] |
冯伟忠,李励. “双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J]. 发电技术,2022, 43(3): 452-461.
|
| [5] |
谭青博,潘伟,王竹宁,等. 新型电力系统下综合能源系统的投资决策模型[J]. 智慧电力,2023, 51(8): 46-52.
|
| [6] |
|
| [7] |
李国庆,李欣彤,边竞,等. 计及光伏-负荷预测不确定性的直流跨省互联电网双级调度策略[J]. 中国电机工程学报,2021, 41(14): 4763-4776.
|
| [8] |
彭泽森,刘庆珍,张溢. 基于多模型综合特征选择和LSTM-Attention的短期负荷预测[J]. 分布式能源,2022, 7(6): 11-20.
|
| [9] |
|
| [10] |
戴明明,王康,李强,等. 基于天气分类和卷积神经网络的短期负荷预测方法[J]. 电力需求侧管理,2023, 25(3): 93-98.
|
| [11] |
蒲天骄,韩笑. 新型电力系统中人工智能应用的关键技术[J]. 电力信息与通信技术,2024, 22(1): 1-13.
|
| [12] |
李磊,林珊,贾颉辉. 基于TCN-Attention神经网络的短期负荷预测[J]. 电力信息与通信技术,2023, 21(3): 10-16.
|
| [13] |
耿光飞,郭喜庆. 模糊线性回归法在负荷预测中的应用[J]. 电网技术,2002, 26(4): 19-21.
|
| [14] |
邓带雨,李坚,张真源,等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术,2020, 44(2): 593-602.
|
| [15] |
|
| [16] |
朱凌建,荀子涵,王裕鑫,等. 基于CNN-Bi LSTM的短期电力负荷预测[J]. 电网技术,2021, 45(11): 4532-4539.
|
| [17] |
周思思,李勇,郭钇秀,等. 考虑时序特征提取与双重注意力融合的TCN超短期负荷预测[J]. 电力系统自动化,2023, 47(18): 193-205.
|
| [18] |
|
| [19] |
|
| [20] |
|
/
| 〈 |
|
〉 |