气象因子动态自适应的短期负荷预测方法

邓立,耿琳,肖伟栋,王国成,王艳红

分布式能源 ›› 2024, Vol. 9 ›› Issue (3) : 73-81.

PDF(4478 KB)
PDF(4478 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (3) : 73-81. DOI: 10.16513/j.2096-2185.DE.2409309
应用技术

气象因子动态自适应的短期负荷预测方法

作者信息 +

Short-Term Load Forecasting Method Based on Dynamic Adaptation of Meteorological Factors

Author information +
文章历史 +

摘要

在加快构建新型电力系统背景下,提升负荷预测精度是保障电力系统经济、安全、稳定运行的重要措施,也是推动智能电网发展的关键所在。为增强对地区负荷的预测能力,提出一种气象影响因子动态自适应的短期负荷预测方法。首先,建立了基于并行多尺度时域卷积神经网络的负荷/气象信息融合模块,挖掘历史负荷与区域天气预报的多时间周期的变化模式;然后,提出了基于深度门控残差神经网络的气象因子动态辨识模块,通过动态调整特征贡献度并优化特征选择,增强对不同时空尺度特征权重的融合,提升模型对关键特征的提取能力;最后,以京津冀某区域的负荷数据进行算例分析,证明所提区域负荷预测方法具有更高的预测精度,对区域负荷的趋势性变化有较好的追踪效果。

Abstract

In the context of accelerating the construction of a new power system, improving the accuracy of load forecasting is an important measure to ensure the economic, safe and stable operation of the power system, and it is also the key to promote the development of smart grid. In order to enhance the ability of regional load forecasting, a short-term load forecasting method based on dynamic adaptive meteorological impact factors is proposed. Firstly, a load/meteorological information fusion module based on parallel multi-scale temporal convolutional neural networks is employed to mine the multi-time period change model of historical load and regional weather forecast. Then, a dynamic identification module of meteorological factors based on depth-gated residual neural network is proposed. By dynamically adjusting the feature contribution and optimizing the feature selection, the fusion of feature weights of different spatio-temporal scales is enhanced, and the ability of the model to extract key features is improved. Finally, the load data of a region in Beijing, Tianjin and Hebei are used as an example to prove that the proposed regional load forecasting method has higher forecasting accuracy and better tracking effect on regional load trend changes.

关键词

负荷预测 / 区域负荷 / 深度学习 / 数据融合 / 数值天气预报

Key words

load forecasting / regional load / deep learning / data fusion / numerical weather prediction

引用本文

导出引用
邓立, 耿琳, 肖伟栋, . 气象因子动态自适应的短期负荷预测方法[J]. 分布式能源. 2024, 9(3): 73-81 https://doi.org/10.16513/j.2096-2185.DE.2409309
Li DENG, Lin GENG, Weidong XIAO, et al. Short-Term Load Forecasting Method Based on Dynamic Adaptation of Meteorological Factors[J]. Distributed Energy Resources. 2024, 9(3): 73-81 https://doi.org/10.16513/j.2096-2185.DE.2409309
中图分类号: TK01; TM73   

参考文献

[1]
张勋奎. 以新能源为主体的新型电力系统发展路线图[J]. 分布式能源2021, 6(6): 1-8.
ZHANG Xunkui. A roadmap for developing a new power system with new energy as the main body[J]. Distributed Energy, 2021, 6(6): 1-8.
[2]
胡博,谢开贵,邵常政,等. 双碳目标下新型电力系统风险评述:特征、指标及评估方法[J]. 电力系统自动化2023, 47(5): 1-15.
HU Bo, XIE Kaigui, SHAO Changzheng, et al. Commentary on risk of new power system under goals of carbon emission peak and carbon neutrality: Characteristics, indices and assessment methods[J]. Automation of Electric Power Systems, 2023, 47(5): 1-15.
[3]
郭峰,王悦,陆鑫,等. 含高比例风电的新型电力系统的经济运行及储能配置[J]. 智慧电力2023, 51(11): 76-82.
GUO Feng, WANG Yue, LU Xin, et al. Economic operation and energy storage configuration of new power system with high penetration of wind power[J]. Smart Power, 2023, 51(11): 76-82.
[4]
冯伟忠,李励. “双碳”目标下煤电机组低碳、零碳和负碳化转型发展路径研究与实践[J]. 发电技术2022, 43(3): 452-461.
FENG Weizhong, LI Li. Research and practice on development path of low-carbon, zero-carbon and negative carbon transformation of coal-fired power units under “Double Carbon” targets[J]. Power Generation Technology, 2022, 43(3): 452-461.
[5]
谭青博,潘伟,王竹宁,等. 新型电力系统下综合能源系统的投资决策模型[J]. 智慧电力2023, 51(8): 46-52.
TAN Qingbo, PAN Wei, WANG Zhuning, et al. Investment decision model for comprehensive energy system under new power system[J]. Smart Power, 2023, 51(8): 46-52.
[6]
GUANG F, WEN L, SHARP B. Energy efficiency improvements and industry transition: An analysis of China's electricity consumption[J]. Energy, 2022, 244: 122625.
[7]
李国庆,李欣彤,边竞,等. 计及光伏-负荷预测不确定性的直流跨省互联电网双级调度策略[J]. 中国电机工程学报2021, 41(14): 4763-4776.
LI Guoqing, LI Xintong, BIAN Jing, et al. Two level scheduling strategy for inter-provincial DC power grid considering the uncertainty of PV-load prediction[J]. Proceedings of the CSEE, 2021, 41(14): 4763-4776.
[8]
彭泽森,刘庆珍,张溢. 基于多模型综合特征选择和LSTM-Attention的短期负荷预测[J]. 分布式能源2022, 7(6): 11-20.
PENG Zesen, LIU Qingzhen, ZHANG Yi. Short term load forecasting based on multi-model comprehensive feature selection and LSTM-attention[J]. Distributed Energy, 2022, 7(6): 11-20.
[9]
WU J, CHEN Y, YU L, et al. Coupling effects of consumption side renewable portfolio standards and carbon emission trading scheme on China's power sector: A system dynamic analysis [J]. Journal of Cleaner Production, 2022, 380: 134931.
[10]
戴明明,王康,李强,等. 基于天气分类和卷积神经网络的短期负荷预测方法[J]. 电力需求侧管理2023, 25(3): 93-98.
DAI Mingming, WANG Kang, LI Qiang, et al. Short-term load forecasting method based on weather classification and convolutional neural network [J]. Power Demand Side Management, 2023, 25(3): 93-98.
[11]
蒲天骄,韩笑. 新型电力系统中人工智能应用的关键技术[J]. 电力信息与通信技术2024, 22(1): 1-13.
PU Tianjiao, HAN Xiao. Research on key technologies in the application of artificial intelligence in new type power systems[J]. Electric Power Information and Communication Technology, 2024, 22(1): 1-13.
[12]
李磊,林珊,贾颉辉. 基于TCN-Attention神经网络的短期负荷预测[J]. 电力信息与通信技术2023, 21(3): 10-16.
LI Lei, LIN Shan, JIA Jiehui. Short-term load forecasting based on TCN-attention neural network [J]. Electric Power Information and Communication Technology, 2023, 21(3): 10-16.
[13]
耿光飞,郭喜庆. 模糊线性回归法在负荷预测中的应用[J]. 电网技术2002, 26(4): 19-21.
GENG Guangfei, GUO Xiqing. Application of fuzzy linear regression to load forecasting [J]. Power System Technology, 2002, 26(4): 19-21.
[14]
邓带雨,李坚,张真源,等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术2020, 44(2): 593-602.
DENG Daiyu, LI Jian, ZHANG Zhenyuan, et al. Short-term electric load forecasting based on EEMD-GRU-MLR [J]. Power System Technology, 2020, 44(2): 593-602.
[15]
ZHANG G, GUO J. A novel method for hourly electricity demand forecasting[J]. Trends in Ecology & Evolution, 2020, 35(2): 1351-1363.
[16]
朱凌建,荀子涵,王裕鑫,等. 基于CNN-Bi LSTM的短期电力负荷预测[J]. 电网技术2021, 45(11): 4532-4539.
ZHU Lingjian, XUN Zihan, WANG Yuxin, et al. Short-term power load forecasting based on CNN-Bi LSTM [J]. Power System Technology, 2021, 45(11): 4532-4539.
[17]
周思思,李勇,郭钇秀,等. 考虑时序特征提取与双重注意力融合的TCN超短期负荷预测[J]. 电力系统自动化2023, 47(18): 193-205.
ZHOU Sisi, LI Yong, GUO Yixiu, et al. Ultra-short-term load forecasting based on temporal convolutional network considering temporal feature extraction and dual attention fusion[J]. Automation of Electric Power Systems, 2023, 47(18): 193-205.
[18]
ZHANG W, ZHOU H, BAO X, et al. Outlet water temperature prediction of energy pile based on spatial-temporal feature extraction through CNN-LSTM hybrid model[J]. Energy, 2023, 264: 126190.
[19]
TONG C, ZHANG L, LI H, et al. Attention-based temporal-spatial convolutional network for ultra-short-term load forecasting[J]. Electric Power Systems Research, 2023, 220: 109329.
[20]
GUO Y, ZHOU D, CAO J, et al. Gated residual neural networks with self-normalization for translation initiation site recognition[J]. Knowledge-Based Systems, 2022, 237: 107783.

PDF(4478 KB)

Accesses

Citation

Detail

段落导航
相关文章

/