综合能源系统源-荷能量的多时间尺度预测

张时聪,杨芯岩,韩少锋,吴迪,刘志坚,郭中骏

分布式能源 ›› 2024, Vol. 9 ›› Issue (4) : 1-10.

PDF(2674 KB)
PDF(2674 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (4) : 1-10. DOI: 10.16513/j.2096-2185.DE.2409401
学术研究

综合能源系统源-荷能量的多时间尺度预测

作者信息 +

Multi-Timescale Prediction of Source-Load Energy in Integrated Energy System

Author information +
文章历史 +

摘要

为应对可再生能源利用和用户负荷的不确定性,提出一种多时间尺度预测方法。预测过程分日前、日内滚动和实时3个阶段进行,时间尺度分别为1 h、15 min和5 min。首先,采用基于差值统计的预测方法完成气象参数的3个阶段预测;其次,在负荷预测的日前和日内阶段,建立了信号分解与机器学习相结合的回归预测模型,实时阶段建立了机器学习时间序列预测模型;接着,以测试集的预测精度指标为依据确定了日前和日内滚动阶段对典型日负荷的最佳预测方法;最后,将预测方法应用于典型日的能量预测,验证了方法的可行性。研究结果显示:3个阶段典型日气象参数预测结果的决定系数R2都在0.8以上;在日前和日内滚动阶段,多元负荷的预测任务应采用不同的信号分解方法,实时阶段负荷预测结果的R2值均超过0.9,平均绝对误差百分比(mean absolute percentage error, MAPE)接近0。

Abstract

In order to cope with the uncertainty of renewable energy utilization and customer loads, a multi-timescale prediction method is proposed, where the prediction process is carried out in three phases: day-ahead, intra-day rolling and real-time, with timescales of 1 h, 15 min and 5 min, respectively. First, a prediction method based on difference statistics is used to accomplish the three stages of forecasting meteorological parameters. Second, a regression prediction model combining signal decomposition and machine learning is established for the day-ahead and intraday stages of load prediction, and a machine learning time series prediction model is established for the real-time stage. Next, the best prediction methods for typical daily loads in the day-ahead and intra-day rolling stages are determined based on the prediction accuracy metrics of the test set. Finally, the prediction method is applied to the energy forecast of typical days to verify the feasibility of the method. The results show that the determination coefficient R2 of the prediction results of the meteorological parameters for a typical day in all three phases is above 0.8; in the day-ahead and intraday rolling phases, the prediction tasks of multivariate loads should be performed with different signal decomposition methods, and the R2 of the load prediction results in the real-time phase is above 0.9, and the mean absolute percentage error (MAPE) is close to 0.

关键词

能量预测 / 信号分解 / 机器学习 / 多时间尺度

Key words

energy prediction / signal decomposition / machine learning / multi-timescale

引用本文

导出引用
张时聪, 杨芯岩, 韩少锋, . 综合能源系统源-荷能量的多时间尺度预测[J]. 分布式能源. 2024, 9(4): 1-10 https://doi.org/10.16513/j.2096-2185.DE.2409401
Shicong ZHANG, Xinyan YANG, Shaofeng HAN, et al. Multi-Timescale Prediction of Source-Load Energy in Integrated Energy System[J]. Distributed Energy Resources. 2024, 9(4): 1-10 https://doi.org/10.16513/j.2096-2185.DE.2409401
中图分类号: TK01   

参考文献

[1]
臧宝志,吴长龙,朱宏光,等. 考虑环保与可靠性成本的园区综合能源系统经济运行技术[J]. 分布式能源2020, 5(4): 18-27.
ZANG Baozhi, WU Changlong, ZHU Hongguang, et al. Eeonomie operation technology of integrated community energy system considering environmental protection and reliability cost[J]. Distributed Energy, 2020, 5(4): 18-27.
[2]
SAIKIA P, DAS N, BURAGOHAIN M. Robust energy storage system for stable in wind and solar[J]. Renewable and Sustainable Energy Reviews, 2024, 191: 114079.
[3]
郑诗程,许浩,郎佳红,等. 计及光伏不确定性的多区域综合能源系统多场景分布鲁棒优化调度[J]. 太阳能学报2024, 45(3): 460-469.
ZHENG Shicheng, XU Hao, LANG Jiahong, et al. Multi-scenario distributed robust optimal scheduling of multi-area integrated energy systems considering photovoltaic uncertainty[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 460-469.
[4]
LINDBERG O, LINGFORS D, ARNQVIST J, et al. Day-ahead probabilistic forecasting at a co-located wind and solar power park in Sweden: Trading and forecast verification[J]. Advances in Applied Energy, 2023, 9: 100120.
[5]
陈中飞,赵越,蔡秋娜,等. 基于净负荷预测误差统计的电力系统爬坡能力充裕度评估[J]. 中国电力2024, 57(5): 50-60.
CHEN Zhongfei, ZHAO Yue, CAI Qiuna, et al. Adequacy evaluation of power system ramping capability based on net load forecast error statistics[J]. Electric Power, 2024, 57(5): 50-60.
[6]
杨首晖,陈传彬,王雪晶,等. 基于小波变换和季节性Holt-Winters模型的短期负荷预测方法[J]. 电力需求侧管理2021, 23(5): 70-75.
YANG Shouhui, CHEN Chuanbin, WANG Xuejing, et al. A short-term load prediction method based on the wavelet transform and seasonal Holt-Winters model[J]. Power Demand Side Management, 2021, 23(5): 70-75.
[7]
KIM J, SON J, KOO J. Hybrid models of machine-learning and mechanistic models for indoor particulate matter concentration prediction[J]. Journal of Building Engineering, 2024, 86: 108836.
[8]
王超,陈奇,谷新梅,等. 一种基于混合模型的短期电价预测方法[J]. 内蒙古电力技术2023, 41(4): 73-80.
WANG Chao, CHEN Qi, GU Xinmei, et al. A short-term electricity price forecasting method based on hybrid model[J]. Inner Mongolia Electric Power, 2023, 41(4): 73-80.
[9]
封钰,宋佑斌,金晟,等. 基于随机森林算法和粗糙集理论的改进型深度学习短期负荷预测模型[J]. 发电技术2023, 44(6): 889-895.
FENG Yu, SONG Youbin, JIN Sheng, et al. Improved deep learning model for forecasting short-term load based on random forest algorithm and rough set theory[J]. Power Generation Technology, 2023, 44(6): 889-895.
[10]
胡如乐,陈逸枞,张大海,等. 基于SSA-Bi-LSTM神经网络的母线负荷预测方法[J]. 广东电力2022, 35(2): 19-26.
HU Rule, CHEN Yicong, ZHANG Dahai, et al. Bus load prediction method based on SSA-Bi-LSTM neural network[J]. Guangdong Electric Power, 2022, 35(2): 19-26.
[11]
MOUNIR N, OUADI H, JRHILIFA I. Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system[J]. Energy and Buildings, 2023, 288: 113022.
[12]
MA Z, WANG J, DONG F, et al. A decomposition-ensemble prediction method of building thermal load with enhanced electrical load information[J]. Journal of Building Engineering, 2022, 61: 105330.
[13]
LI N, LI L, ZHANG F, et al. Research on short-term photovoltaic power prediction based on multi-scale similar days and ESN-KELM dual core prediction model[J]. Energy, 2023, 277: 127557.
[14]
CHENG S, WANG R, XU J, et al. Multi-time scale coordinated optimization of an energy hub in the integrated energy system with multi-type energy storage systems[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101327.
[15]
王德文,安涵. 基于二次分解双向门控单元新型电力系统超短期负荷预测[J]. 电力科学与工程2024, 40(3): 1-9.
WANG Dewen, AN Han. Ultra-short-term load forecasting of new power system based on quadratic decomposition and bidirectional gating unit[J]. Electric Power Science and Engineering, 2024, 40(3): 1-9.
[16]
邹鑫,罗涓. 用梯度提升决策树实现电力负荷非线性影响因素分析[J]. 电力科学与工程2024, 40(3): 10-19.
ZOU Xin, LUO Juan. The analysis of nonlinear influence factors of electric power load realized by gradient lifting decision tree[J]. Electric Power Science and Engineering, 2024, 40(3): 10-19.
[17]
GUO J, YUN S, MENG Y, et al. Prediction of heating and cooling loads based on light gradient boosting machine algorithms[J]. Building and Environment, 2023, 236: 110252.
[18]
赵紫昱,陈渊睿,陈霆威,等. 基于时空图注意力网络的超短期区域负荷预测[J]. 电力系统自动化2024, 48(12): 147-155.
ZHAO Ziyu, CHEN Yuanrui, CHEN Tingwei, et al. Ultra-short-term regional load forecast based on spatio-temporal graph attention network[J]. Automation of Electric Power Systems, 2024, 48(12): 147-155.
[19]
LIU J, HUANG X, LI Q, et al. Hourly stepwise forecasting for solar irradiance using integrated hybrid models CNN-LSTM-MLP combined with error correction and VMD[J]. Energy Conversion and Management, 2023, 280: 116804.
[20]
郭威,孙胜博,陶鹏,等. 基于多元变分模态分解和混合深度神经网络的短期光伏功率预测[J]. 太阳能学报2024, 45(4): 489-499.
GUO Wei, SUN Shengbo, TAO Peng, et al. Short-term photovoltaic power forecasting based on multivariate variational mode decomposition and hybrid deep neural network[J]. Acta Energiae Solaris Sinica, 2024, 45(4): 489-499.
[21]
胡雪峰,张亮. 基于迁移学习和AlexNet的复合电能质量扰动识别[J]. 自动化仪表2023, 44(7): 55-60.
HU Xuefeng, ZHANG Liang. Compound power quality disturbance identification based on migration learning and AlexNet[J]. Process Automation Instrumentation, 2023, 44(7): 55-60.

基金

国家自然科学基金项目(52206247)
国家重点研发计划项目(2022YFE0117200)
中央高校基本科研业务费专项资金资助项目(2022MS089)

PDF(2674 KB)

Accesses

Citation

Detail

段落导航
相关文章

/