基于全扇区统一占空比函数的Ⅰ型NPC三电平SVPWM载波化算法

吴扣林,袁庆伟,谢晔源,刘洪德,钱为

分布式能源 ›› 2024, Vol. 9 ›› Issue (4) : 11-22.

PDF(3992 KB)
PDF(3992 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (4) : 11-22. DOI: 10.16513/j.2096-2185.DE.2409402
学术研究

基于全扇区统一占空比函数的Ⅰ型NPC三电平SVPWM载波化算法

作者信息 +

Three-Level SVPWM Carrier Algorithm of Type Ⅰ NPC Based on Unified Duty Cycle Function of Whole Sector

Author information +
文章历史 +

摘要

Ⅰ型中性点钳位(neutral point clamped, NPC)三电平变流器作为中大容量新能源发电系统的核心设备,其调制策略直接影响变流器的能量转换效率、谐波特性和运行控制特性等。鉴于Ⅰ型三电平变流器的传统空间矢量脉宽调制(space vector pulse width modulation, SVPWM)策略在实施过程中包含大量三角函数运算,基于三相静止坐标系进行调制算法的大小扇区判断和矢量作用时间计算等,并通过归纳整理,按照单调制波双载波的载波化思路,获得了适用于全扇区的三相统一的占空比函数。借助该占空比函数,变流器的数字控制器仅需通过简单的关系运算和数值计算,便可获得变流器功率管的控制信号,省去了大量三角函数计算,节约了硬件资源。此外,将SVPWM与正弦波脉宽调制(sinusoidal pulse width modulation,SPWM)+3次谐波注入调制算法进行对比,从调制波层面,揭示了这2种调制算法之间的内在差异。最后,通过仿真验证了该算法的有效性。

Abstract

As the core equipment of medium and large-capacity new energy power generation system, the modulation algorithm of the type I neutral point clamped (NPC) three-level (3L) converter can directly affect the energy conversion efficiency, harmonic characteristics and operation control characteristics of the converter. In view of that lots of trigonometric function computation is included in the implementation process of the traditional space vector pulse width modulation (SVPWM) strategy of type I NPC 3L converter, this paper executes the sector-area location identifications of the reference voltage vector and the active time calculations of the voltage vector adopted in the modulation algorithm based on the three-phase stationary coordinate system. By induction and reorganization, the three-phase unified duty ratio function available for all sectors is obtained according to the carrier-based idea of single modulated wave with dual-carrier. With the duty ratio function, the digital controller of the converter can obtain the control signals of the power switches by simple relational operations and numerical calculations, which avoids a lot of trigonometric function calculations and saves hardware resources. In addition, the SVPWM and sinusoidal pulse width modulation (SPWM) + 3rd harmonic injection modulation algorithms are compared, and the intrinsic differences between the two modulation algorithms from the perspective of the modulated waves are revealed. Finally, the effectiveness of the proposed algorithm is verified by software simulation.

关键词

三电平 / SVPWM载波化 / SPWM+3次谐波注入 / 三相静止坐标系 / 统一占空比函数

Key words

three-level / carrier-based SVPWM / SPWM+ 3rd harmonic injection / three-phase stationary coordinate system / unified duty ratio function

引用本文

导出引用
吴扣林, 袁庆伟, 谢晔源, . 基于全扇区统一占空比函数的Ⅰ型NPC三电平SVPWM载波化算法[J]. 分布式能源. 2024, 9(4): 11-22 https://doi.org/10.16513/j.2096-2185.DE.2409402
Koulin WU, Qingwei YUAN, Yeyuan XIE, et al. Three-Level SVPWM Carrier Algorithm of Type Ⅰ NPC Based on Unified Duty Cycle Function of Whole Sector[J]. Distributed Energy Resources. 2024, 9(4): 11-22 https://doi.org/10.16513/j.2096-2185.DE.2409402
中图分类号: TM46   

参考文献

[1]
林玉鑫,张京业. 海上风电的发展现状与前景展望[J]. 分布式能源2023, 8(2): 1-10.
LIN Yuxin, ZHANG Jingye. Development status and prospect of offshore wind power[J]. Distributed Energy, 2023, 8(2): 1-10.
[2]
蔡旭,陈根,周党生,等. 海上风电变流器研究现状与展望[J]. 全球能源互联网2019, 2(2): 102-115.
CAI Xu, CHEN Gen, ZHOU Dangsheng, et al. Review and prospect on key technologies for offshore wind power converters[J]. Journal of Global Energy Interconnection, 2019, 2(2): 102-115.
[3]
李铮,郭小江,申旭辉,等. 我国海上风电发展关键技术综述[J]. 发电技术2022, 43(2): 186-197.
LI Zheng, GUO Xiaojiang, SHEN Xuhui, et al. Summary of technologies for the development of offshore wind power industry in China[J]. Power Generation Technology, 2022, 43(2): 186-197.
[4]
刘淑军,郭铸,黄伟煌,等. 海上风电柔性直流输电系统新型电压-频率控制策略[J]. 广东电力2022, 35(10): 12-19.
LIU Shujun, GUO Zhu, HUANG Weihuang, et al. New voltage/frequency control strategy in offshore wind power VSC-HVDC transmission system[J]. Guangdong Electric Power, 2022, 35(10): 12-19.
[5]
吕杰,杨维稼,黄玮,等. 66 kV交流接入海上换流站方案的技术经济性[J]. 中国电力2020, 53(7): 72-79.
LV Jie, YANG Weijia, HUANG Wei, et al. Techno-economic of 66 kV AC connection solution for offshore wind power[J]. Electric Power, 2020, 53(7): 72-79.
[6]
蔡蓉,张立波,程濛,等. 66 kV海上风电交流集电方案技术经济性研究[J]. 全球能源互联网2019, 2(2): 155-162.
CAI Rong, ZHANG Libo, CHENG Meng, et al. Technical and economic research on 66 kV offshore wind power AC collection solution[J]. Journal of Global Energy Interconnection, 2019, 2(2): 155-162.
[7]
沈志雨,刘毅力,郑博文,等. 基于自适应VSG的微网光储充放电控制技术[J]. 分布式能源2021, 6(5): 18-25.
SHEN Zhiyu, LIU Yili, ZHENG Bowen, et al. Microgrid optical storage charge and discharge control technology based on adaptive virtual synchronous generator[J]. Distributed Energy, 2021, 6(5): 18-25.
[8]
陈强. 三电平储能变流器的研制[J]. 电力电子技术2021, 55(3): 122-124.
CHEN Qiang. Development of three-level energy storage converter[J]. Power Electronics, 2021, 55(3): 122-124.
[9]
王聪聪,肖伸平. 改进下垂控制在三相三电平PWM整流器中的应用[J]. 分布式能源2017, 2(5): 24-29.
WANG Congcong, XIAO Shenping. Application of improved droop control in three-phase three-level PWM rectifier[J]. Distributed Energy, 2017, 2(5): 24-29.
[10]
任康乐,张兴,王付胜,等. 中压三电平并网逆变器断续脉宽调制策略及其输出滤波器优化设计[J]. 中国电机工程学报2015, 35(17): 4494-4504.
REN Kangle, ZHANG Xing, WANG Fusheng, et al. Optimized design of discontinuous pulse-width modulation and output filter for medium-voltage three-level grid-connected inverter[J]. Proceedings of the CSEE, 2015, 35(17): 4494-4504.
[11]
方斯琛,李丹,周波,等. 新型无扇区空间矢量脉宽调制算法[J]. 中国电机工程学报2008, 28(30): 35-40.
FANG Sichen, LI Dan, ZHOU Bo, et al. A novel algorithm of space-vector PWM without sector calculation[J]. Proceedings of the CSEE, 2008, 28(30): 35-40.
[12]
王金平,刘斌,董浩,等. 中点钳位型三电平逆变器基于调制波分解的调制策略[J]. 电工技术学报2023, 38(12): 3221-3233.
WANG Jinping, LIU bin, DONG Hao, et al. A modulation strategy based on modulation wave decomposition for neutral point clamped three-level inverter[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3221-3233.
[13]
谷鑫,黄文豪,张国政,等. NPC三电平逆变器区间可调混合载波调制策略[J]. 电工电能新技术2022, 41(10): 11-19.
GU Xin, HUANG Wenhao, ZHANG Guozheng, et al. NPC three-level inverter interval adjustable hybrid carrier modulation strategy[J]. Advanced Technology of Electrical Engineering and Energy, 2022, 41(10): 11-19.
[14]
SIDDIQUE M D, SARWAR A. Performance analysis of carrier based PWM technique for three level diode clamped multilevel inverter with different reference signals[C]//2016 IEEE 7th Power India International Conference (PIICON), November 25-27, 2016, Bikaner, India: IEEE Press, 2016: 1-6.
[15]
骆子溥. 基于SVPWM调制技术的NPC三电平逆变器的研究与设计[D]. 哈尔滨:哈尔滨理工大学,2021.
LUO Zipu. Research and design of NPC three-level inverter based on SVPWM modulation technology[D]. Harbin: Harbin University of Science and Technology, 2021.
[16]
周冠卿,张国荣,解润生,等. 改进的三电平逆变器变虚拟空间矢量调制策略[J]. 电力系统自动化2023, 47(1): 172-182.
ZHOU Guanqing, ZHANG Guorong, XIE Runsheng, et al. Improved variable virtual-space-vector modulation strategy for three-level inverter[J]. Automation of Electric Power Systems, 2023, 47(1): 172-182.
[17]
王红斌,刘成柱,吴龙,等. 三电平NPC逆变器的SHEPWM和DPWM切换策略研究[J]. 电力勘测设计2021(6): 72-78.
WANG Hongbin, LIU Chengzhu, WU Long, et al. Study on switching strategy of SHEPWM and DPWM for three-level NPC inverter[J]. Electric Power Survey & Design, 2021(6): 72-78.
[18]
王志捷,张兴,刘芳,等. 基于SHEPWM的三电平并网逆变器控制研究[J]. 电力电子技术2018, 52(3): 1-3.
WANG Zhijie, ZHANG Xing, LIU Fang, et al. Research on control of three-level grid-connected inverter based on SHEPWM[J]. Power Electronics, 2018, 52(3): 1-3.
[19]
程竟陵. 改进SHEPWM技术及其在大功率并网逆变器的应用[D]. 杭州:浙江大学,2021.
CHENG Jingling. Improved SHEPWM technology and its application in high-power grid-connected inverter[D]. Hangzhou: Zhejiang University, 2021.
[20]
刘云峰,何英杰,程瑞琪,等. 单相二极管箝位多电平逆变器CBPWM与SVPWM调制策略的等效关系[J]. 电机与控制学报2020, 24(9): 13-21.
LIU Yunfeng, HE Yingjie, CHENG Ruiqi, et al. Equivalent relationship between carrier-based and space vector PWM strategy in single phase NPC multi-level inverter[J]. Electric Machines and Control, 2020, 24(9): 13-21.
[21]
王东毅. 三电平变流器调制策略研究[D]. 合肥:合肥工业大学,2016.
WANG Dongyi. Research on the modulation strategies for three-level converter[D]. Hefei: Hefei University of Technology, 2016.
[22]
BUSQUETS-MONGE S, BORDONAU J, BOROYEVICH D, et al. The nearest three virtual space vector PWM-A modulation for the comprehensive neutral-point balancing in the three-level NPC inverter[J]. IEEE Power Electronics Letters, 2004, 2(1): 11-15
[23]
牟文静,卢晓,鲁金升,等. 60°坐标系下三电平逆变器SVPWM的关键问题[J]. 电力科学与工程2016, 32(7): 1-6.
MU Wenjing, LU Xiao, LU Jinsheng, et al. The key problems of three level inverter SVPWM in the 60 degrees coordinates[J]. Electric Power Science and Engineering, 2016, 32(7): 1-6.
[24]
陈晓鸥,许春雨,王枫明. 60°坐标系下三电平逆变器SVPWM控制策略研究[J]. 电工电能新技术2017, 36(2): 43-49.
CHEN Xiaoou, XU Chunyu, WANG Fengming. Study on SVPWM method based on 60° coordinate system for three-level inverter[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(2): 43-49.
[25]
方辉,宋文胜,冯晓云,等. 三电平SVPWM与CBPWM算法的内在联系研究[J]. 电工技术学报2014, 29(10): 19-26.
FANG Hui, SONG Wensheng, FENG Xiaoyun, et al. Relationship between three-level SVPWM and CBPWM[J]. Transactions of China Electrotechnical Society, 2014, 29(10): 19-26.
[26]
ZHENG Weiyi, ZHU Chong, ZENG Zhiyong, et al. An optimized algorithm for SVPWM based on three-phase stationary frame[C]//2015 IEEE Industry Applications Society Annual Meeting. Piscataway, October 18-22, 2015, Addison, TX, USA: IEEE Press, 2015: 1-7.
[27]
徐晓娜,王奎,郑泽东,等. 三相PWM变换器的共模电压抑制方法综述[J]. 中国电机工程学报2023, 43(22): 8833-8850.
XU Xiaona, WANG kui, ZHENG Zedong, et al. A review on common-mode voltage reduction methods for three-phase PWM converters[J]. Proceedings of the CSEE, 2023, 43(22): 8833-8850.
[28]
李光竹,詹坤,高广德,等. 基于PWM自适应稳压电流互感器的取能电源设计方法[J]. 智慧电力2022, 50(6): 57-63.
LI Guangzhu, ZHAN Kun, GAO Guangde, et al. Design method of draw-out power supply based on PWM adaptive voltage-stabilized current transformer[J]. Smart Power, 2022, 50(6): 57-63.

本文得到国家电网南瑞集团有限公司JS2301767阻断型柔性交流合环装置关键技术研究及样机研制项目资助,在此表示衷心感谢。

基金

国家重点研发计划项目(2023YFB2407403)

PDF(3992 KB)

Accesses

Citation

Detail

段落导航
相关文章

/