PDF(1640 KB)
PDF(1640 KB)
PDF(1640 KB)
基于滑模变结构的混合微电网接口变换器双向下垂控制
Bidirectional Droop Control of Hybrid Microgrid Interface Converter Based on Sliding Mode Control
由于混合微电网中的交直流子网具有不同的动态特性,当系统发生负荷突变时,会在双向接口变换器(bidirectional interface converter, BIC)两侧子网间产生功率波动,使交流母线频率和直流母线电压动态响应变差,为此提出了基于分数阶滑模控制器(fractional order sliding mode controller, FOSMC)的双向下垂控制策略。将具有鲁棒性强、响应速度快和抗干扰能力强的滑模变结构控制引入到BIC的控制中,得到改进型的分数阶滑模控制器,以改善系统的暂态响应过程。通过Matlab/Simulink平台搭建了仿真模型,在多种工况下验证了该控制策略的有效性。与传统双向下垂控制相比,该控制算法可以在保证系统原有稳态特性的同时,加快整个系统的响应速度,抑制暂态过程中BIC传输功率的瞬间波动,减小功率波动对交直流子网母线的反作用,提高整个系统的动态性能和抗扰动性能。
Due to the different dynamic characteristics of AC-DC subnets in hybrid microgrids, power fluctuations will occur between subnets on both sides of the bidirectional interface converter (BIC) when the system's load changes, and the dynamic response of AC bus frequency and DC bus voltage will become poor. Therefore, a bidirectional droop control strategy based on fractional order sliding mode controller (FOSMC) is proposed. By introducing the sliding mode variable structure control with strong robustness, fast response speed and strong anti-interference ability into the BIC control, an improved fraction-order sliding mode controller is obtained, which can improve the transient response process of the system. The simulation model is built by Matlab/Simulink platform, and the effectiveness of the control strategy is verified under various working conditions. Compared with the traditional bidirectional droop control, the proposed control algorithm can not only guarantee the original steady-state characteristics of the system, but also accelerate the response speed of the whole system, suppress the instantaneous fluctuation of BIC transmission power in the transient process, reduce the reaction of power fluctuation on the AC and DC subnets bus, and improve the dynamic performance and anti-disturbance performance of the whole system.
交直流混合微电网 / 双向接口变换器(BIC) / 子网惯性 / 滑模变结构控制 / 双向下垂控制
hybrid AC-DC microgrid / bidirectional interface converter(BIC) / microgrid inertia / sliding mode control / bidirectional droop control
| [1] |
黄远明,张玉欣,夏赞阳,等. 考虑需求响应资源和储能容量价值的新型电力系统电源规划方法[J]. 上海交通大学学报,2023, 57(4): 432-441.
|
| [2] |
苑文凯,郑天文,陈来军,等. 基于耗散理论的分布式发电组网系统小干扰稳定性分析方法[J]. 高电压技术,2021, 47(10): 3497-3504.
|
| [3] |
|
| [4] |
嘉言,施凯,徐培凤,等. 交直流混合微电网接口变换器改进型双向下垂控制策略[J]. 分布式能源,2023, 8(4): 1-10.
|
| [5] |
赵多,贾燕冰,任春光,等. 基于双向BIC的混合微电网交直流母线电压统一控制策略[J]. 电网技术,2021, 45(8): 3105-3114.
|
| [6] |
|
| [7] |
|
| [8] |
高泽,杨建华,季宇,等. 交直流混合微电网接口变换器双向下垂控制[J]. 南方电网技术,2015, 9(5): 82-87.
|
| [9] |
|
| [10] |
|
| [11] |
田浩,黄文焘,余墨多,等. 交直流混合独立微网互联变换器自适应双向下垂控制策略[J]. 中国电机工程学报,2022, 42(19): 7063-7074.
|
| [12] |
盛德刚,徐运兵,王晓丹,等. 孤岛运行模式下的低压微电网控制策略[J]. 电气技术,2018, 19(1): 34-39.
|
| [13] |
|
| [14] |
|
| [15] |
李娟,金焕,任于涵. 微电网模式切换的转动惯量自适应VSG控制策略[J]. 分布式能源,2019, 4(4): 1-9.
|
| [16] |
|
| [17] |
伍文华,陈燕东,罗安,等. 一种直流微网双向并网变换器虚拟惯性控制策略[J]. 中国电机工程学报,2017, 37(2): 360-372.
|
| [18] |
祝钧,李瑞生,毋炳鑫,等. 交直流混合微电网接口变换器虚拟同步发电机控制方法[J]. 电力系统保护与控制,2017, 45(11): 28-34.
|
| [19] |
|
| [20] |
赵郅毅,许寅,吴翔宇,等. 含异构微源的混合型孤岛微电网暂态有功响应分析与控制策略[J/OL]. 电工技术学报,1-14. (2023-11-21)[2024-02-05].
|
| [21] |
杜燕,言明明,王鑫,等. 交直流子网双边惯量约束下互联变流器动态功率控制策略[J]. 电力系统自动化,2023, 47(4): 172-179.
|
| [22] |
毛颖群,张建平,程浩忠,等. 考虑频率安全约束及风电综合惯性控制的电力系统机组组合[J]. 电力系统保护与控制,2022, 50(11): 61-70.
|
| [23] |
施静容,李勇,贺悝,等. 一种提升交直流混合微电网动态特性的综合惯量控制方法[J]. 电工技术学报,2020, 35(2): 337-345.
|
| [24] |
刘彦呈,吕旭,张勤进,等. 基于多滑模变结构的双向并网变换器虚拟惯性控制策略[J]. 电力建设,2022, 43(7): 121-130.
|
| [25] |
张鑫,赖伟坚,林泽宏,等. 光伏逆变器无源分数阶滑动模态控制器设计[J]. 电力系统保护与控制,2019, 47(24): 145-153.
|
| [26] |
李鹏宇,郑涛,杨畅,等. 基于滑模一致性的多并联互联变流器分布式鲁棒功率控制策略[J]. 电网技术,2023, 7(88): 1-11.
|
| [27] |
|
| [28] |
杨继鑫,王久和,王勉,等. 基于无源控制的双向并网变换器虚拟惯性控制策略[J]. 高电压技术,2021, 47(4): 1295-1303.
|
| [29] |
程启明,陈颖,程尹曼,等. 基于MMC的统一潮流控制器反演滑模控制策略[J]. 智慧电力,2023, 51(6): 41-48.
|
| [30] |
郭亦宗,郭创新. 基于虚拟同步发电机的微电网并离网安全控制策略[J]. 发电技术,2020, 41(6): 650-658.
|
/
| 〈 |
|
〉 |