PDF(3204 KB)
PDF(3204 KB)
PDF(3204 KB)
基于自适应H∞容积卡尔曼滤波的配电网动态状态估计方法
Dynamic State Estimation Method of Distribution Network Based on Adaptive H∞ Cubature Kalman Filter
受负荷随机变化、需求响应参与、分布式电源波动、量测装置种类多等因素的影响,容易出现配电网量测数据值异常,导致配电网动态状态估计精度下降。为了提高配电网状态估计的精度,提出了一种基于自适应H∞容积卡尔曼滤波的配电网动态状态估计方法。首先,在容积卡尔曼滤波基础上,将自适应因子和H∞滤波器相结合,对模型误差问题进行处理与限制。其次,结合噪声估值器,对过程噪声中的参数进行在线估计,减少噪声对预测误差的影响。最后,对典型配电网69节点系统进行仿真,仿真结果表明:该方法在系统正常运行、需求响应参与削峰填谷以及负荷发生突变这3种场景下,其估计精度均提高10%以上,保持了相对高的估计精度。
Due to the random variation of load, the participation of demand response, the fluctuation of distributed power supply, and the variety of measurement devices, the measurement data of distribution network is prone to abnormal values, which leads to the decline of dynamic state estimation accuracy. In order to improve the accuracy of distribution network state estimation, this paper proposed a dynamic state estimation method for distribution network based on adaptive H∞ cubature Kalman filter. Firstly, based on the cubature Kalman filter, the adaptive factor and H∞ filter were combined to deal with and limit the model error. Secondly, combined with the noise estimator, the parameters in the process noise were estimated online to reduce the influence of noise on the prediction error. Finally, a typical distribution network system with 69 nodes was simulated. The simulation results show that the estimation accuracy of the proposed method is improved by more than 10% under three scenarios: system normal operation, demand response participating in peak load shaving and load mutation, maintaining a relatively high estimation accuracy.
状态估计 / 容积卡尔曼滤波 / H∞滤波器 / 噪声估值器 / 需求响应
state estimation / cubature Kalman filter / H∞ filter / noise statistic estimator / demand response
| [1] |
|
| [2] |
崔杨,谷春池,付小标,等. 考虑广义电热需求响应的含碳捕集电厂综合能源系统低碳经济调度[J]. 中国电机工程学报,2022, 42(23): 8431-8446.
|
| [3] |
于东民,杨超,蒋林洳,等. 电动汽车充电安全防护研究综述[J]. 中国电机工程学报,2022, 42(6): 2145-2164.
|
| [4] |
唐成虹,李淑锋,陈永华,等. 计及分布式电源的主动配电系统状态估计[J]. 广东电力,2021, 34(3): 60-67.
|
| [5] |
臧海祥,耿明昊,黄蔓云,等. 电-热-气混联综合能源系统状态估计研究综述与展望[J]. 电力系统自动化,2022, 46(7): 187-199.
|
| [6] |
|
| [7] |
巫春玲,郑克军,徐先峰,等. 基于自适应插值强跟踪扩展卡尔曼滤波的电力系统动态状态估计研究[J]. 电网技术,2023, 47(5): 2078-2091.
|
| [8] |
马文涛,寇晓,郭耀松,等. 基于扩展KRSL无迹卡尔曼滤波的约束动态状态估计[J]. 电力系统自动化,2023, 47(6): 185-196.
|
| [9] |
郑文迪,聂建雄,邵振国,等. 智能配电网状态估计研究现状和展望[J]. 电力系统及其自动化学报,2021, 33(4): 8-16.
|
| [10] |
孙江山,刘敏,邓磊,等. 基于自适应无迹卡尔曼滤波的配电网状态估计[J]. 电力系统保护与控制,2018, 46(11): 1-7.
|
| [11] |
王彤,高明阳,黄世楼,等. 基于自适应容积卡尔曼滤波的双馈风力发电机动态状态估计[J]. 电网技术,2021, 45(5): 1837-1845.
|
| [12] |
|
| [13] |
|
| [14] |
艾蔓桐,孙永辉,王义,等. 基于插值H∞扩展卡尔曼滤波的发电机动态状态估计[J]. 中国电机工程学报,2018, 38(19): 5846-5853, 5942.
|
| [15] |
王玉彬,夏明超,李鹏,等. 基于改进鲁棒自适应UKF的配电网动态状态估计方法[J]. 电力系统自动化,2020, 44(1): 92-100.
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
曲正伟,张嘉曦,王云静,等. 考虑分布式电源不确定性的配电网改进仿射状态估计[J]. 电力系统自动化,2021, 45(23): 104-112.
|
| [22] |
白星振,郑鑫磊,葛磊蛟,等. 基于事件触发机制的配电网自适应UKF动态状态估计[J]. 高电压技术,2021, 47(7): 2312-2321.
|
| [23] |
吉兴全,刘小虎,张玉敏,等. 基于WGPR的三相不平衡配电网鲁棒状态估计方法[J]. 智慧电力,2023, 51(11): 61-68.
|
| [24] |
廖英祺,荆江平,叶婷. 基于约束卡尔曼滤波的区域多能源系统鲁棒状态估计[J]. 广东电力,2023, 36(9): 80-88.
|
/
| 〈 |
|
〉 |