电-碳市场下考虑风光不确定性的虚拟电厂优化调度

陈洁,王樊云,徐涛,左超文

分布式能源 ›› 2024, Vol. 9 ›› Issue (4) : 60-68.

PDF(2125 KB)
PDF(2125 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (4) : 60-68. DOI: 10.16513/j.2096-2185.DE.2409407
学术研究

电-碳市场下考虑风光不确定性的虚拟电厂优化调度

作者信息 +

Optimal Scheduling of Virtual Power Plant Considering Wind Power and PV Uncertainty in Electric-Carbon Market

Author information +
文章历史 +

摘要

在“双碳”目标的背景下,电力行业已成为碳减排中的重要组成部分。虚拟电厂(virtual power plant,VPP)通过整合和聚集分布式资源等参与碳市场,可进一步提升整体效益;然而,分布式新能源出力的不确定性给其运营管理带来了许多挑战。为此,在利用基于拉丁超立方抽样的场景生成与场景削减法处理风电、光伏出力不确定性问题的基础上,将多单元聚合并考虑到用户侧需求响应的VPP作为一个整体去参与电能量市场以及碳市场,构建VPP总成本最小的优化调度模型,然后利用改进灰狼优化算法对其进行求解。通过对不同场景算例进行对比分析,可以得出:碳市场及需求响应的存在,加强了风光等清洁能源的消纳,减少了温室气体的排放,也减少了VPP的运行成本,经济性和环保性得到了兼顾。

Abstract

Against the backdrop of the "dual carbon" target, the power sector has become an important part of carbon reduction. Virtual power plants (VPP) can further improve their overall efficiency by integrating and aggregating distributed resources to participate in the carbon market. However, the uncertainty of distributed new energy output poses many challenges for their operation and management. Therefore, on the basis of using the scenario generation and scenario reduction method based on Latin hypercubic sampling to deal with the uncertainty problem of wind power and photovoltaic output of distributed energy, the VPP, which aggregates multiple units and takes into account the user-side demand response, participates in electric energy market as well as the carbon market as a whole, and the optimal scheduling model with the minimum total cost of the VPP is constructed, which is finally solved by using the improved gray wolf optimization algorithm. Through comparative analysis of different scenarios, it can be concluded that the existence of carbon market and demand response enhances the consumption of clean energy such as wind power and photovoltaic, and reduces greenhouse gas emissions, and reduces the operating cost of the VPPs, and takes into account its economy and environmental protection.

关键词

虚拟电厂(VPP) / 碳交易 / 需求响应 / 场景生成与削减 / 改进灰狼算法

Key words

virtual power plant(VPP) / carbon trading / demand response / scene generation and reduction / improved gray wolf algorithm

引用本文

导出引用
陈洁, 王樊云, 徐涛, . 电-碳市场下考虑风光不确定性的虚拟电厂优化调度[J]. 分布式能源. 2024, 9(4): 60-68 https://doi.org/10.16513/j.2096-2185.DE.2409407
Jie CHEN, Fanyun WANG, Tao XU, et al. Optimal Scheduling of Virtual Power Plant Considering Wind Power and PV Uncertainty in Electric-Carbon Market[J]. Distributed Energy Resources. 2024, 9(4): 60-68 https://doi.org/10.16513/j.2096-2185.DE.2409407
中图分类号: TK01; TM73   

参考文献

[1]
SHEN Z, WANG Z, ZHAO H, et al. Multi-objective stochastic scheduling optimization model for virtual power plants with carbon emission constraints[C]//2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). Changsha, China: IEEE, 2019: 2012-2017.
[2]
方燕琼,艾芊,范松丽. 虚拟电厂研究综述[J]. 供用电2016, 33(4): 8-13.
FANG Yanqiong, AI Qian, FAN Songli. A review on virtual power plant[J]. Distribution & Utilization, 2016, 33(4): 8-13.
[3]
HAN B, PENG D, BAO H. Virtual power plant scheduling model considering carbon trading mechanism and uncertainty of source and load[C]//2022 4th International Conference on Electrical Engineering and Control Technologies (CEECT). Shanghai, China: IEEE, 2022: 1-6.
[4]
RIZVI S A A, XIN A, MASOOD A. Optimized scheduling of virtual power plants considering demand response with TOU approach[C]//2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). Hangzhou, China: IEEE, 2022: 1982-1986.
[5]
李楠,鲁肖龙,杨莘博,等. 考虑碳循环利用的农村VPP运行效益均衡分配优化模型[J]. 智慧电力2023, 51(1): 78-85, 107.
LI Nan, LU Xiaolong, YANG Shenbo, et al. Operation benefit balanced distribution optimization model for rural virtual power plant considering carbon recycling utilization[J]. Smart Power, 2023, 51(1): 78-85, 107.
[6]
张云飞,周强,丁戈,等. 考虑多源相关不确定性的乡村虚拟电厂自治优化运行[J]. 广东电力2023, 36(10): 47-56.
ZHANG Yunfei, ZHOU Qiang, DING Ge, et al. Autonomous optimal operation of rural virtual power plants considering multisource correlation uncertainties[J]. Guangdong Electric Power, 2023, 36(10): 47-56.
[7]
LEI R, ZHOU M, WU Z, et al. The optimal operation and revenue allocation method of virtual power plant considering carbon trading[C]//2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). Wuhan, China: IEEE, 2020: 2396-2402.
[8]
LI Z S, SHU S T, ZHI X, et al. Study on the participation of virtual power plants with demand response in peaking auxiliary services[C]//2022 Power System and Green Energy Conference (PSGEC). Shanghai, China: IEEE, 2022: 716-721.
[9]
曹昕,郑亚先. 同时参与电力和碳市场的虚拟电厂优化调度研究[J]. 电气自动化2023, 45(3): 99-102.
CAO Xin, ZHENG Yaxian. Research on optimal scheduling of virtual power plants in both power market and carbon market[J]. Electrical Automation, 2023, 45(3): 99-102.
[10]
李东东,王啸林,沈运帷,等. 考虑多重不确定性的含需求响应及电碳交易的虚拟电厂优化调度策略[J]. 电力自动化设备2023, 43(5): 210-217, 251.
LI Dongdong, WANG Xiaolin, SHEN Yunwei, et al. Optimal scheduling strategy of virtual power plant with demand response and electricity-carbon trading considering multiple uncertainties[J]. Electric Power Automation Equipment, 2023, 43(5): 210-217, 251.
[11]
王佳惠,牛玉广,陈玥,等. 电-碳联合市场下虚拟电厂主从博弈优化调度[J]. 电力自动化设备2023, 43(5): 235-242.
WANG Jiahui, NIU Yuguang, CHEN Yue, et al. Master-slave game optimal dispatching of virtual power plant under electricity-carbon joint market[J]. Electric Power Automation Equipment, 2023, 43(5): 235-242.
[12]
娄素华,胡斌,吴耀武,等. 碳交易环境下含大规模光伏电源的电力系统优化调度[J]. 电力系统自动化2014, 38(17): 91-97.
LOU Suhua, HU Bin, WU Yaowu, et al. Optimal dispatch of power system integrated with large scale photovoltaic generation under carbon trading environment[J]. Automation of Electric Power Systems, 2014, 38(17): 91-97.
[13]
CHANG Y, ZHANG S, SONG L, et al. Coordination mechanism of electricity market and carbon market[C]//2022 2nd International Conference on Electrical Engineering and Control Science (IC2ECS). Nanjing, China: IEEE, 2022: 500-503.
[14]
ZHANG H, WANG R, DANG Z, et al. Low-carbon optimal scheduling considering source-load carbon emission constraint[C]//2023 Panda Forum on Power and Energy (PandaFPE). Chengdu, China: IEEE, 2023: 1035-1040.
[15]
张钧钊,姜欣,段世杰,等. 虚拟电厂参与电-碳联合市场运行的竞价策略研究[J]. 电力系统保护与控制2023, 51(11): 108-118.
ZHANG Junzhao, JIANG Xin, DUAN Shijie, et al. Bidding strategy for a virtual power plant to participate in the power-carbon joint market[J]. Power System Protection and Control, 2023, 51(11): 108-118.
[16]
张立辉,戴谷禹,聂青云,等. 碳交易机制下计及用电行为的虚拟电厂经济调度模型[J]. 电力系统保护与控制2020, 48(24): 154-163.
ZHANG Lihui, DAI Guyu, NIE Qingyun, et al. Economic dispatch model of virtual power plant considering electricity consumption under a carbon trading mechanism[J]. Power System Protection and Control, 2020, 48(24): 154-163.
[17]
刘航,马梓萌,王嘉巍. 需求响应资源调节潜力分析综述[J]. 吉林电力2022, 50(2): 5-8.
LIU Hang, MA Zimeng, WANG Jiawei. Summary of research on analysis technology of demand response resource adjustment potential[J]. Jilin Electric Power, 2022, 50(2): 5-8.
[18]
谢敦见. 温控负荷的需求响应潜力评估及其协同优化管理研究[D]. 杭州:浙江大学,2019.
XIE Dunjian. Research on demand response potential evaluation and collaborative optimization management of temperature control load[D]. Hangzhou: Zhejiang University, 2019.
[19]
CHEN Y, WEN J Y, CHENG S J. Probabilistic load flow method based on Nataf transformation and Latin hypercube sampling[J] IEEE Transactions on Sustainable Energy, 2012, 4(2): 294-301.
[20]
付文杰,王喻玺,申洪涛,等. 基于拉丁超立方抽样和场景消减的居民用户基线负荷估计方法[J]. 电网技术2022, 46(6): 2298-2307.
FU Wenjie, WANG Yuxi, SHEN Hongtao, et al. Residential customer baseline load estimation based on Latin hypercube sampling and scenario subtraction[J]. Power System Technology, 2022, 46(6): 2298-2307.
[21]
石存金,希望·阿不都瓦依提,吕海鹏,等. 计及风—负荷不确定性的风—氢微网容量优化[J]. 计算机仿真2023, 40(3): 89-95.
SHI Cunjin, XIWANG·Abuduwayiti, LV Haipeng, et al. Optimal capacity allocation of wind-hydrogen microgrid taking into account wind-load uncertainty[J]. Computer Simulation, 2023, 40(3): 89-95.
[22]
李责瑞. 主动配电网中分布式电源优化配置研究[D]. 吉林:长春工业大学,2023.
LI Zerui. Research on optimal configuration of distributed power sources in active distribution networks[D]. Jilin: Changchun University of Technology, 2023.
[23]
赵蕾. 考虑源荷不确定性的含氢综合能源系统优化调度研究[D]. 吉林:东北电力大学,2023.
ZHAO Lei. Research on optimal scheduling of hydrogen-containing integrated energy system considering source-load uncertianty[D]. Jilin: Northeast Dianli University, 2023.
[24]
SEYEDALI M, SEYED M M, ANDREW L. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3): 46-61.
[25]
田书欣,刘浪,魏书荣,等. 基于改进灰狼优化算法的配电网动态重构[J]. 电力系统保护与控制2021, 49(16): 1-11.
TIAN Shuxin, LIU Lang, WEI Shurong, et al. Dynamic reconfiguration of a distribution network based on an improved grey wolf optimization algorithm[J] Power System Protection and Control, 2021, 49(16): 1-11.
[26]
江雨燕,傅杰,甘如美江,等. 改进灰狼算法优化GBDT在PM2.5预测中的应用[J]. 安全与环境学报2024, 24(4): 1569-1580.
JIANG Yuyan, FU Jie, GAN Rumeijiang, et al. Application of improved gray wolf algorithm to optimize GBDT in PM2.5 prediction[J]. Journal of Safety and Environment, 2024, 24(4): 1569-1580.
[27]
WU L, WU J W, MENG Z Z. Enhancing grey wolf optimizer with levy flight for engineering applications[J]. IEEE Access, 2023, 11(7): 74865-74897.
[28]
秦典. 源荷储多时间尺度滚动优化调度研究[D]. 贵阳:贵州大学,2021.
QIN Dian. Research on multi-time scale rolling optimization scheduling of source load and storage[D]. Guiyang: Guizhou University, 2021.

基金

贵州省科技计划项目(黔科合支撑[2021]一般409)

PDF(2125 KB)

Accesses

Citation

Detail

段落导航
相关文章

/