基于图神经网络的光伏组串故障诊断

朱壮华,张卫平,王文彦,史学峰,马亚勇,刘志宏

分布式能源 ›› 2024, Vol. 9 ›› Issue (4) : 78-85.

PDF(1626 KB)
PDF(1626 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (4) : 78-85. DOI: 10.16513/j.2096-2185.DE.2409409
应用技术

基于图神经网络的光伏组串故障诊断

作者信息 +

Fault Diagnosis of Photovoltaic String Based on Graph Neural Network

Author information +
文章历史 +

摘要

光伏组串运行状态分析是建模和故障诊断的基础,而故障诊断是保障光伏系统安全经济运行的重要手段。提出基于图神经网络的邻近光伏组串故障诊断模型,通过比较历史窗口期内光伏组串的电流和电压数据来监测光伏系统的运行状态。该方法无需新增传感器设备,电流和电压数据直接通过逆变器获得。选取某光伏电站6组典型光伏组串,仿真模拟了常见故障运行状态和正常运行状态,并结合仿真数据对图神经网络模型进行了训练和测试。测试结果显示,尽管6个典型组串在光伏组件数量、方向、位置等方面存在较大差异,训练好的图神经网络模型仍然可对5种常见故障进行实时监测和诊断。对比测试的结果显示:在没有天气数据的情况下,图神经网络模型的诊断准确率高于当前精度较高的两种常见诊断方法;此外,图神经网络模型可推广到未经训练的光伏组串,并且能在多个光伏组串同时发生故障时保持较高的诊断准确率。

Abstract

The analysis of photovoltaic string operation status is the foundation of modeling and fault diagnosis, and fault diagnosis is an important means to ensure the safe and economic operation of photovoltaic systems. This article proposes a fault diagnosis model for adjacent photovoltaic strings based on graph neural networks, which monitors the operating status of photovoltaic systems by comparing the current and voltage data of photovoltaic strings during the historical window period. This method does not require the addition of new sensor equipment, and current and voltage data are directly obtained through the inverter. Six typical photovoltaic strings are selected for a certain photovoltaic power station, and common fault operation states and normal operation states are simulated. The graph neural network model is trained and tested based on simulation data. The test results show that although there are significant differences in the number, direction, and position of photovoltaic modules among the six typical strings, the trained graph neural network model can monitor and diagnose five common faults in real time. The results of comparative testing show that in the absence of weather data, the diagnostic accuracy of the graph neural network model is higher than the two commonly used diagnostic methods with higher accuracy. In addition, the graph neural network model can be extended to untrained photovoltaic strings and can maintain high diagnostic accuracy when multiple photovoltaic strings fail simultaneously.

关键词

光伏组串 / 故障诊断 / 机器学习 / 图神经网络 / 特征选取

Key words

photovoltaic string / fault diagnosis / machine learning / graph neural network / feature selection

引用本文

导出引用
朱壮华, 张卫平, 王文彦, . 基于图神经网络的光伏组串故障诊断[J]. 分布式能源. 2024, 9(4): 78-85 https://doi.org/10.16513/j.2096-2185.DE.2409409
Zhuanghua ZHU, Weiping ZHANG, Wenyan WANG, et al. Fault Diagnosis of Photovoltaic String Based on Graph Neural Network[J]. Distributed Energy Resources. 2024, 9(4): 78-85 https://doi.org/10.16513/j.2096-2185.DE.2409409
中图分类号: TK51   

参考文献

[1]
肖瑶,钮文泽,魏高升,等. 太阳能光伏/光热技术研究现状与发展趋势综述[J]. 发电技术2022, 43(3): 392-404.
XIAO Yao, NIU Wenze, WEI Gaosheng, et al. Review on research status and developing tendency of solar photovoltaic/thermal technology[J]. Power Generation Technology, 2022, 43(3): 392-404.
[2]
刘宇,赵映,李世朝. 光伏发电系统在火力发电厂的应用研究[J]. 内蒙古电力技术2022, 40(2): 36-39.
LIU Yu, ZHAO Ying, LI Shizhao. Research on application of photovoltaic power generation system in thermal power plant[J]. Inner Mongolia Electric Power, 2022, 40(2): 36-39.
[3]
朱一昕,陈奕帆,毕恺韬,等. 基于半不变量随机潮流计算的分布式光伏优化配置研究[J]. 智慧电力2023, 51(3): 67-72.
ZHU Yixin, CHEN Yifan, BI Kaitao, et al. Optimal allocation of distributed PV based on semi-invariant stochastic power flow calculation[J]. Smart Power, 2023, 51(3): 67-72.
[4]
汪红波,周强明,刘恒怡,等. 光伏发电系统一次调频技术回顾与发展趋势[J]. 广东电力2022, 35(1): 11-21.
WANG Hongbo, ZHOU Qiangming, LIU Hengyi, et al. Review and development trend of primary frequency modulation technology in photovoltaic power generation system[J]. Guangdong Electric Power, 2022, 35(1): 11-21.
[5]
汤耀景,孔凡坊,宋国兵,等. 分布式光伏并网线路的相间故障主动探测式保护原理[J]. 供用电2023, 40(1): 41-48.
TANG Yaojing, KONG Fanfang, SONG Guobing, et al. Active detection protection method for interphase fault of distributed photovoltaic grid-connected line[J]. Distribution & Utilization, 2023, 40(1): 41-48.
[6]
罗天禄,王雪娜,赵榕,等. 含光伏电源配电网故障的智能辨识方法研究[J]. 电子测量技术2023, 46(19): 111-118.
LUO Tianlu, WANG Xuena, ZHAO Rong, et al. Research on intelligent fault identification method of distribution network including photovoltaic power supply[J]. Electronic Measurement Technology, 2023, 46(19): 111-118.
[7]
刘瑞,杨玲. 基于东南亚热带季风气候下光伏箱变的故障处理[J]. 科学技术创新2023(27): 65-68.
LIU Rui, YANG Ling. Troubleshooting of photovoltaic box variables based on the tropical monsoon climate of south-east asia [J]. Scientific and Technological Innovation, 2023(27): 65-68.
[8]
PILLAI D S, RAJASEKAR N. A comprehensive review on protection challenges and fault diagnosis in PV systems[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 18-40.
[9]
ZINGER D S. Review on methods of fault diagnosis in photovoltaic system applications[J]. Journal of Engineering Science & Technology Review, 2019, 12(5) : 53-66.
[10]
ADHYA D, CHATTERJEE S, CHAKRABORTY A K. Performance assessment of selective machine learning techniques for improved PV array fault diagnosis[J]. Sustainable Energy, Grids and Networks, 2022, 29: 100582.
[11]
DE BENEDETTI M, LEONARDI F, MESSINA F, et al. Anomaly detection and predictive maintenance for photovoltaic systems[J]. Neurocomputing, 2018, 310: 59-68.
[12]
JIANG L L, MASKELL D L. Automatic fault detection and diagnosis for photovoltaic systems using combined artificial neural network and analytical based methods[C]//2015 International Joint Conference on Neural Networks (IJCNN). Killarney, Ireland: IEEE, 2015: 1-8.
[13]
CHINE W, MELLIT A, LUGHI V, et al. A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks[J]. Renewable Energy, 2016, 90: 501-512.
[14]
ZHAO Y, BALL R, MOSESIAN J, et al. Graph-based semi-supervised learning for fault detection and classification in solar photovoltaic arrays[J]. IEEE Transactions on Power Electronics, 2014, 30(5): 2848-2858.
[15]
VAN GOMPEL J, SPINA D, DEVELDER C. Satellite based fault diagnosis of photovoltaic systems using recurrent neural networks[J]. Applied Energy, 2022, 305: 117874.
[16]
CHEN Z, WU L, CHENG S, et al. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and IV characteristics[J]. Applied Energy, 2017, 204: 912-931.
[17]
LIN P, QIAN Z, LU X, et al. Compound fault diagnosis model for photovoltaic array using multi-scale SE-ResNet[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101785.
[18]
GAO W, WAI R J, CHEN S Q. Novel PV fault diagnoses via SAE and improved multi-grained cascade forest with string voltage and currents measures[J]. IEEE Access, 2020, 8: 133144-133160.
[19]
KUMAR B P, ILANGO G S, REDDY M J B, et al. Online fault detection and diagnosis in photovoltaic systems using wavelet packets[J]. IEEE Journal of Photovoltaics, 2017, 8(1): 257-265.
[20]
LU X, LIN P, CHENG S, et al. Fault diagnosis for photovoltaic array based on convolutional neural network and electrical time series graph[J]. Energy Conversion and Management, 2019, 196: 950-965.
[21]
HUUHTANEN T, JUNG A. Predictive maintenance of photovoltaic panels via deep learning[C]//2018 IEEE Data Science Workshop (DSW). Lausanne, Switzerland: IEEE, 2018: 66-70.
[22]
FENG M, BASHIR N, SHENOY P, et al. Sundown: Model-driven per-panel solar anomaly detection for residential arrays[C]//Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable Societies. New York, USA: Association for Computing Machinery, 2020: 291-295.
[23]
IYENGAR S, LEE S, SHELDON D, et al. Solarclique: Detecting anomalies in residential solar arrays[C]//Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies. New York, USA: Association for Computing Machinery, 2018: 1-10.
[24]
GOVERDE H, HERTELEER B, ANAGNOSTOS D, et al. Energy yield prediction model for PV modules including spatial and temporal effects[C]//European Photovoltaic Solar Energy Conference and Exhibition. Amsterdam, Netherlands: IMEC, 2014: 3292-3296.
[25]
Dimitrios A, GOVERDE H, HERTELEER B, et al. Demonstration and validation of an energy yield prediction model suitable for non-steady state non-uniform conditions[C]//The 6th World Conference on Photovoltaic Energy Conversion. Kyoto, Japan: IMEC, 2014.
[26]
付晓敏,郭文斌,周元贵,等. 考虑支架特性的光伏电站技术经济分析[J]. 分布式能源2023, 8(1): 76-80.
FU Xiaomin, GUO Wenbin, ZHOU Yuangui, et al. Technical and economic analysis of photovoltaic power station considering the characteristics of bracket[J]. Distributed Energy, 2023, 8(1): 76-80.
[27]
ACUNA D, LING H, KAR A, et al. Efficient interactive annotation of segmentation datasets with polygon-RNN++[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 859-868.
[28]
MAGUIRE J B, GRATTAROLA D, MULLIGAN V K, et al. XENet: Using a new graph convolution to accelerate the timeline for protein design on quantum computers[J]. PLoS Computational Biology, 2021, 17(9): 1009037.
[29]
SIMONOVSKY M, KOMODAKIS N. Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 3693-3702.
[30]
XIE T, GROSSMAN J C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties[J]. Physical Review Letters, 2018, 120(14): 145301.
[31]
李昭昱,艾芊,张宇帆,等. 基于attention机制的LSTM神经网络超短期负荷预测方法[J]. 供用电2019, 36(1): 17-22.
LI Zhaoyu, AI Qian, ZHANG Yufan, et al. A LSTM neural network method based on attention mechanism for ultra short-term load forecasting[J]. Distribution & Utilization, 2019, 36(1): 17-22.

基金

中国华能集团有限公司山西分公司科技项目(HNK T20-H2022092140)

PDF(1626 KB)

Accesses

Citation

Detail

段落导航
相关文章

/