空穴传输层在反式钙钛矿太阳能电池中的应用现状

戴申华,刘尧,王圣文

分布式能源 ›› 2024, Vol. 9 ›› Issue (5) : 1-10.

PDF(3624 KB)
PDF(3624 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (5) : 1-10. DOI: 10.16513/j.2096-2185.DE.2409501
综述

空穴传输层在反式钙钛矿太阳能电池中的应用现状

作者信息 +

Current Status of Hole Transport Layer Applications in Inverted Perovskite Solar Cells

Author information +
文章历史 +

摘要

反式钙钛矿太阳能电池因其高稳定性、易于大面积制备及适用于叠层结构等优点而受到广泛关注。空穴传输层作为反式钙钛矿太阳能电池的重要组成部分,在空穴的提取与传输、表面钝化、钙钛矿结晶以及器件稳定性等方面发挥着关键作用。为探索高效、稳定、高透明且低成本的空穴传输层,以推动反式钙钛矿太阳能电池的商业化进程,文章报道了近年来在该领域所使用的无机和有机空穴传输材料,并列举了相应的制备方法,旨在实现高性能、高稳定性和低成本的反式钙钛矿太阳能电池。

Abstract

The inverted perovskite solar cells have garnered significant attention due to their high stability, ease of large-scale fabrication, and suitability for tandem structures. The hole transport layer, as a crucial component of perovskite solar cells, plays a vital role in hole extraction and transport, surface passivation, perovskite crystallization, and device stability. To explore efficient, stable, highly transparent, and low-cost hole transport layers that can facilitate the commercialization of perovskite solar cells, this article reports on recent advancements in inorganic and organic hole transport materials utilized in this field. It also outlines the corresponding preparation methods with the aim of achieving high-performance, high-stability, and cost-effective perovskite solar cells.

关键词

反式钙钛矿太阳能电池 / 光伏器件 / 光电转化效率 / 柔性化 / 空穴传输材料

Key words

inverted perovskite solar cells / photovoltaics / photoelectric conversion efficiency / flexible / hole transport materials

引用本文

导出引用
戴申华, 刘尧, 王圣文. 空穴传输层在反式钙钛矿太阳能电池中的应用现状[J]. 分布式能源. 2024, 9(5): 1-10 https://doi.org/10.16513/j.2096-2185.DE.2409501
Shenhua DAI, Yao LIU, Shengwen WANG. Current Status of Hole Transport Layer Applications in Inverted Perovskite Solar Cells[J]. Distributed Energy Resources. 2024, 9(5): 1-10 https://doi.org/10.16513/j.2096-2185.DE.2409501
中图分类号: TK51   

参考文献

[1]
金涛,朱莉,陈博文,等. 基于合作博弈的微电网群运行优化方法研究[J]. 智慧电力2022, 50(3): 15-21, 29.
JIN Tao, ZHU Li, CHEN Bowen, et al. Operation optimization method of microgrid group based on cooperative game[J]. Smart Power, 2022, 50(3): 15-21, 29.
[2]
ZUO C, BOLINK H J, HAN H, et al. Advances in perovskite solar cells[J]. Advanced Science, 2016, 3(7): 1500324.
[3]
LIU S W, BIJU V P, QI Y, et al. Recent progress in the development of high-efficiency inverted perovskite solar cells[J]. NPG Asia Materials, 2023, 15: 27.
[4]
岳晓鹏,赵兴,闫慧琳,等. 基于SnO2电子传输层的n-i-p型钙钛矿太阳能电池关键技术研究[J]. 发电技术2023, 44(1): 63-77.
YUE Xiaopeng, ZHAO Xing, YAN Huilin, et al. Research of key technologies for n-i-p perovskite solar cells with SnO2 electron transport layer[J]. Power Generation Technology, 2023, 44(1): 63-77.
[5]
KIM J Y, LEE J W, JUNG H S, et al. High-efficiency perovskite solar cells[J]. Chemical Reviews, 2020, 120(15): 7867-7918.
[6]
LIANG Z, ZHANG Y, XU H, et al. Homogenizing out-of-plane cation composition in perovskite solar cells[J]. Nature, 2023, 624(7992): 557-563.
[7]
TU S, GANG Y, LIN Y, et al. Triple cross-linking engineering strategies for efficient and stable inverted flexible perovskite solar cells[J]. Small, 2024, 20(29): 2310868.
[8]
ZHAO L, SUN X, YAO Q, et al. Field-effect control in hole transport layer composed of Li: NiO/NiO for highly efficient inverted planar perovskite solar cells[J]. Advanced Materials Interfaces, 2022, 9(2): 2101562.
[9]
SUN W, LI Y, YE S, et al. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer[J]. Nanoscale, 2016, 8(20): 10806-10813.
[10]
UTHAYARAJ S, KARUNARATHNE D, KUMARA G, et al. Powder pressed cuprous iodide (CuI) as a hole transporting material for perovskite solar cells[J]. Materials, 2019, 12(13): 2037.
[11]
LIU N, CHU L, AHMAD W, et al. Low-pressure treatment of CuSCN hole transport layers for enhanced carbon-based perovskite solar cells[J]. Journal of Power Sources, 2021, 499: 229970.
[12]
LIU Z, HE T, WANG H, et al. Improving the stability of the perovskite solar cells by V2O5 modified transport layer film[J]. RSC Advances, 2017, 7(30): 18456-18465.
[13]
WU F, XIAO Q, SUN X, et al. Hole transporting layer engineering via a zwitterionic polysquaraine toward efficient inverted perovskite solar cells[J]. Chemical Engineering Journal, 2022, 445: 136760.
[14]
YAHIRO M, SUGAWARA S, MAEDA S, et al. improved performance of perovskite solar cells by suppressing the energy-level shift of the PEDOT: PSS hole transport layer[J]. ACS Applied Energy Materials, 2021, 4(12): 14590-14598.
[15]
YANG L, CAI F, YAN Y, et al. Conjugated small molecule for efficient hole transport in high-performance p-i-n type perovskite solar cells[J]. Advanced Functional Materials, 2017, 27(31): 1702613.
[16]
ZHAO D, SEXTON M, PARK H-Y, et al. High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer[J]. Advanced Energy Materials, 2015, 5(6): 1401855.
[17]
DOCAMPO P, BALL J M, DARWICH M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates[J]. Nature Communications, 2013, 4(1): 2761.
[18]
ZHU Z, BAI Y, ZHANG T, et al. High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells[J]. Angewandte Chemie International Edition, 2014, 126(46): 12571-12575.
[19]
ABDOLLAHI NEJAND B, AHMADI V, SHAHVERDI H R, et al. New physical deposition approach for low cost inorganic hole transport layer in normal architecture of durable perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2015, 7(39): 21807-21818.
[20]
PARK J H, SEO J, PARK S, et al. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition[J]. Advanced Materials, 2015, 27(27): 4013-4019.
[21]
CHEN W, WU Y, YUE Y, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J]. Science, 2015, 350(6263): 944-948.
[22]
PAE S R, BYUN S, KIM J, et al. Improving uniformity and reproducibility of hybrid perovskite solar cells via a low-temperature vacuum deposition process for NiOx hole transport layers[J]. ACS Applied Materials & Interfaces 2017, 10(1): 534-540.
[23]
SUN J, LU J, LI B, et al. Inverted perovskite solar cells with high fill-factors featuring chemical bath deposited mesoporous NiO hole transporting layers[J]. Nano Energy, 2018, 49: 163-171.
[24]
MALI S S, KIM H, KIM H H, et al. Nanoporous p-type NiOx electrode for p-i-n inverted perovskite solar cell toward air stability[J]. Materials Today, 2018, 21(5): 483-500.
[25]
SEO S, PARK I J, KIM M, et al. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells[J]. Nanoscale, 2016, 8(22): 11403-11412.
[26]
ZHAO B, LEE L C, YANG L, et al. In situ atmospheric deposition of ultrasmooth nickel oxide for efficient perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 41849-41854.
[27]
KOUSHIK D, JOŠT M, DUČINSKAS A, et al. Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells[J]. Journal of Materials Chemistry C, 2019, 7(40): 12532-12543.
[28]
SUBBIAH A S, HALDER A, GHOSH S, et al. Inorganic hole conducting layers for perovskite-based solar cells[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1748-1753.
[29]
YE S, SUN W, LI Y, et al. CuSCN-based inverted planar perovskite solar cell with an average pce of 15. 6%[J]. Nano Letters, 2015, 15(6): 3723-3728.
[30]
WANG H, YU Z, JIANG X, et al. Efficient and stable inverted planar perovskite solar cells employing cui as hole-transporting layer prepared by solid-gas transformation[J]. Energy Technology, 2017, 5(10): 1836-1843.
[31]
YU W, LI F, WANG H, et al. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells[J]. Nanoscale, 2016, 8(11): 6173-6179.
[32]
YU Z K, FU W F, LIU W Q, et al. Solution-processed CuOx as an efficient hole-extraction layer for inverted planar heterojunction perovskite solar cells[J]. Chinese Chemical Letters, 2017, 28(1): 13-18.
[33]
JENG J Y, CHIANG Y F, LEE M H, et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Advanced Materials, 2013, 25(27): 3727-3732.
[34]
LIANG P W, LIAO C Y, CHUEH C C, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells[J]. Advanced Materials, 2014, 26(22): 3748-3754.
[35]
HEO J H, HAN H J, KIM D, et al. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J]. Energy & Environmental Science, 2015, 8(5): 1602-1608.
[36]
ELBOHY H, BAHRAMI B, MABROUK S, et al. Tuning hole transport layer using urea for high-performance perovskite solar cells[J]. Advanced Functional Materials, 2018, 29(47): 1808740.
[37]
ALI A, AHN Y, KHAWAJA K A, et al. A simple Cu(II) polyelectrolyte as a method to increase the work function of electrodes and form effective p-type contacts in perovskite solar cells[J]. Advanced Functional Materials 2021, 31(26): 2009246.
[38]
CHEN Y, WANG K, QI H, et al. Mitigating Voc loss in tin perovskite solar cells via simultaneous suppression of bulk and interface nonradiative recombination[J]. ACS Applied Materials & Interfaces, 2022, 14(36): 41086-41094.
[39]
ZHANG W, SMITH J, HAMILTON R, et al. Systematic improvement in charge carrier mobility of air stable triarylamine copolymers[J]. Journal of the American Chemical Society, 2009, 131(31): 10814-10815.
[40]
SERPETZOGLOU E, KONIDAKIS I, KAKAVELAKIS G, et al. Improved carrier transport in perovskite solar cells probed by femtosecond transient absorption spectroscopy[J]. ACS Applied Materials & Interfaces, 2017, 9(50): 43910-43919.
[41]
BI C, WANG Q, SHAO Y, et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells[J]. Nature Communications, 2015, 6(1): 7747.
[42]
ZHENG X, DENG Y, CHEN B, et al. Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells[J]. Advanced Materials, 2018, 30(52): 1803428.
[43]
LUO D, YANG W, WANG Z, et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells[J]. Science, 2018, 360(6396): 1442-1446.
[44]
ZHOU Q, QIU J, WANG Y, et al. Multifunctional chemical bridge and defect passivation for highly efficient inverted perovskite solar cells[J]. ACS Energy Letters 2021, 6(4): 1596-1606.
[45]
ZHANG C, LIAO Q, CHEN J, et al. Thermally crosslinked hole conductor enables stable inverted perovskite solar cells with 23.9% efficiency[J]. Advanced Materials, 2023, 35(9): 2209422.

基金

安徽省重点研究与开发计划社发领域项目(2023t07020005)

PDF(3624 KB)

Accesses

Citation

Detail

段落导航
相关文章

/