基于分时数据与优化Stacking模型的光伏电站辐照度预测

杨家豪,张莲,王士彬,杨玉洁,梁法政

分布式能源 ›› 2024, Vol. 9 ›› Issue (5) : 11-21.

PDF(2181 KB)
PDF(2181 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (5) : 11-21. DOI: 10.16513/j.2096-2185.DE.2409502
学术研究

基于分时数据与优化Stacking模型的光伏电站辐照度预测

作者信息 +

Solar Radiation Forecast of Photovoltaic Station Using Time-Division and Improved Stacking Model

Author information +
文章历史 +

摘要

为提高复杂天气条件下地表太阳辐射的预报能力,提出了一种基于分时预测与模型融合的预测方法。首先,通过补充天文辐射特征以反映太阳辐射强度的周期性,并结合天气分类方法引入辐照度衰减系数,对天文辐射进行修正,从而增强了相关性。其次,对数据进行了相关性分析,结果显示地表辐照度主要与天文辐射高度密切相关,而其他气象因素的相关性较低。因此,将数据集按时间节点划分为若干子集,以改变数据分布,从而提升其他关键特征之间的相关性。鉴于不同的数据集使用单一模型进行预测可能导致结果差异,为此采用Stacking算法来提高模型的泛化能力。同时,通过引入交叉验证和叠加高斯噪声的数据增广技术,实现对Stacking模型的优化。实验结果表明,优化后的Stacking模型能够有效提升泛化能力并降低过拟合风险;所提方法能有效识别复杂天气下地表辐照度的随机性,其准确率和合格率分别达到了95.8%和96.7%,相比传统预测方法提高了4%~19%。

Abstract

To enhance the forecasting capability of surface solar radiation under complex weather conditions, a prediction method based on time-specific forecasting and model fusion is proposed. First, astronomical radiation features are supplemented to reflect the periodicity of solar radiation intensity, and a radiation attenuation coefficient is introduced through weather classification methods to correct astronomical radiation, thereby strengthening its correlation. Secondly, a correlation analysis of the data reveals that surface irradiance is primarily closely related to astronomical radiation height, while other meteorological factors exhibit lower correlations. Consequently, the dataset is divided into several subsets based on temporal nodes to alter data distribution and improve the correlation among other key features.Given that using a single model for predictions across different datasets may lead to discrepancies in results, we employ Stacking algorithms to enhance model generalization capabilities. Additionally, by incorporating cross-validation and augmenting data with added Gaussian noise techniques, we optimize the Stacking model.Experimental results indicate that the optimized Stacking model effectively improves generalization ability while reducing overfitting risks; this proposed method can accurately identify the randomness of surface irradiance under complex weather conditions with an accuracy rate of 95.8% and a qualification rate of 96.7%, representing an improvement of 4% to 19% compared to traditional forecasting methods.

关键词

地表太阳辐射 / 特征扩充 / Stacking模型 / 数据增广 / 分时预测

Key words

surface solar irradiance / feature expansion / Stacking model / data augmentation / time-sharing prediction

引用本文

导出引用
杨家豪, 张莲, 王士彬, . 基于分时数据与优化Stacking模型的光伏电站辐照度预测[J]. 分布式能源. 2024, 9(5): 11-21 https://doi.org/10.16513/j.2096-2185.DE.2409502
Jiahao YANG, Lian ZHANG, Shibin WANG, et al. Solar Radiation Forecast of Photovoltaic Station Using Time-Division and Improved Stacking Model[J]. Distributed Energy Resources. 2024, 9(5): 11-21 https://doi.org/10.16513/j.2096-2185.DE.2409502
中图分类号: TK51   

参考文献

[1]
罗眉. “双碳”目标与绿色低碳优势产业高质量发展[J]. 山西财经大学学报2023, 45(): 50-52, 330.
摘要
S2
LUO Mei. “Carbon peaking and carbon neutrality” goals and the high-quality development of the green low-carbon advantage industry[J]. Journal of Shanxi University of Finance and Economics, 2023, 45(): 50-52, 330.
S2
[2]
WILBERFORCE T, BAROUTAJI A, EL HASSAN Z, et al. Prospects and challenges of concentrated solar photovoltaics and enhanced geothermal energy technologies[J]. Science of the Total Environment, 2019, 659: 851-861.
[3]
姚玉璧,郑绍忠,杨扬,等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报2022, 43(10): 524-535.
YAO Yubi, ZHENG Shaozhong, YANG Yang, et al. Progress and prospects on solar energy resource evaluation and utilization efficiency in China[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 524-535.
[4]
刘润鹏,宋禹飞,王宏,等. 太阳能光热发电标准体系研究[J]. 广东电力2023, 36(10): 130-136.
LIU Runpeng, SONG Yufei, WANG Hong, et al. Research on solar thermal power generation standard system[J]. Guangdong Electric Power, 2023, 36(10): 130-136.
[5]
张乾,辛晓洲,张海龙,等. 基于遥感数据和多因子评价的中国地区建设光伏电站的适宜性分析[J]. 地球信息科学学报2018, 20(1): 119-127.
ZHANG Qian, XIN Xiaozhou, ZHANG Hailong, et al. Suitability analysis of photovoltaic power plants in China using remote sensing data and multicriteria evaluation[J]. Journal of Geo-Information Science, 2018, 20(1): 119-127.
[6]
POURASL H H, BARENJI R V, KHOJASTEHNEZHAD V M. Solar energy status in the world: A comprehensive review[J]. Energy Reports, 2023, 10: 3474-3493.
[7]
肖瑶,钮文泽,魏高升,等. 太阳能光伏/光热技术研究现状与发展趋势综述[J]. 发电技术2022, 43(3): 392-404.
XIAO Yao, NIU Wenze, WEI Gaosheng, et al. Review on research status and developing tendency of solar photovoltaic/thermal technology[J]. Power Generation Technology, 2022, 43(3): 392-404.
[8]
郭宴秀,苏建军,马临超,等. 基于IT2FLC的HESS太阳能充电站功率分配策略[J]. 智慧电力2022, 50(5): 62-68, 76.
GUO Yanxiu, SU Jianjun, MA Linchao, et al. Power allocation strategy of hybrid energy storage solar charging station based on IT2FLC[J]. Smart Power, 2022, 50(5): 62-68, 76.
[9]
蔡永翔,杨安黔,付宇,等. 面向分布式光伏并网和电能替代的低压配电网自适应控制[J]. 可再生能源2023, 41(10): 1343-1351.
CAI Yongxiang, YANG Anqian, FU Yu, et al. An adaptive control facing to distributed PV integration and electricity substitution in LV distribution networks[J]. Renewable Energy Resources, 2023, 41(10): 1343-1351.
[10]
惠慧,李蕊,朱逸镝,等. 含高比例分布式光伏的配电网多目标概率规划方法[J]. 电测与仪表2023, 60(11): 2-10.
HUI Hui, LI Rui, ZHU Yidi, et al. Multi-objective probabilistic planning method for distribution network with high proportion of distributed photovoltaic[J]. Electrical Measurement & Instrumentation, 2023, 60(11): 2-10.
[11]
王鑫淼,马志勇,周旺潇,等. 光伏发电系统碳中和及其影响因素[J]. 资源科学2022, 44(8): 1735-1744.
WANG Xinmiao, MA Zhiyong, ZHOU Wangxiao, et al. Carbon neutralization in photovoltaic power generation system and influencing factors[J]. Resources Science, 2022, 44(8): 1735-1744.
[12]
JATHAR L D, GANESAN S, AWASARMOL U, et al. Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle[J]. Environmental Pollution, 2023, 326: 121474.
[13]
张东海,李忠燕,丁立国,等. 影响光伏发电功率的气象因子分析及其预测检验[J]. 沙漠与绿洲气象2023, 17(3): 157-164.
ZHANG Donghai, LI Zhongyan, DING Liguo, et al. Diagnostic analysis of the impact of meteorological factors on photovoltaic power output and its prediction test[J]. Desert and Oasis Meteorology, 2023, 17(3): 157-164.
[14]
周勇. 逐日太阳辐射估算模型及室外计算辐射研究[D]. 西安:西安建筑科技大学,2019.
ZHOU Yong. Study on daily solar radiation estimation model and outdoor calculated radiation[D]. Xi'an: Xi'an University of Architecture and Technology, 2019.
[15]
金存银,张淑花,Xingong LI, 等. 地表太阳辐射短期预测方法研究进展[J]. 太阳能学报2023, 44(12): 150-161.
JIN Cunyin, ZHANG Shuhua, Xingong LI, et al. Research progress on short-term prediction methods of surface solar radiation[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 150-161.
[16]
PEREIRA S, CANHOTO P, SALGADO R. Development and assessment of artificial neural network models for direct normal solar irradiance forecasting using operational numerical weather prediction data[J]. Energy and AI, 2024, 15: 100314.
[17]
赵书强,尚煜东,杨燕燕,等. 基于长短期记忆神经网络的地表太阳辐照度预测[J]. 太阳能学报2021, 42(3): 383-388.
ZHAO Shuqiang, SHANG Yudong, YANG Yanyan, et al. Short-term solar irradiation forecast based on lstm neural network[J]. Acta Energiae Solaris Sinica, 2021, 42(3): 383-388.
[18]
杨德州,李锦键,吕金历,等. 基于改进CNN的光热电场太阳直接法向辐射预测研究[J]. 可再生能源2021, 39(2): 182-188.
YANG Dezhou, LI Jinjian, LV Jinli, et al. Research on solar direct normal irradiance prediction model based on improved CNN for concentrating solar power station[J]. Renewable Energy Resources, 2021, 39(2): 182-188.
[19]
LI Y, WANG Y, QIAN H, et al. Hourly global solar radiation prediction based on seasonal and stochastic feature[J]. Heliyon, 2023, 9(9): e19823.
[20]
蒋锋,杨嘉伟. 基于多目标优化集成学习的短期太阳辐射预测[J]. 云南大学学报(自然科学版), 2021, 43(3): 451-461.
JIANG Feng, YANG Jiawei. Short-term solar radiation forecast based on ensemble learning of multi-objective optimization[J]. Journal of Yunnan University (Natural Sciences Edition), 2021, 43(3): 451-461.
[21]
KONG X, DU X, XUE G, et al. Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism[J]. Energy, 2023, 282: 128825.
[22]
臧海祥,张越,程礼临,等. 基于ICEEMDAN-LSTM和残差注意力的短期太阳辐照度预测[J]. 太阳能学报2023, 44(12): 175-181.
ZANG Haixiang, ZHANG Yue, CHENG Lilin, et al. Short term solar radiation forecasting based on iceemdan-lstm and residual attention[J]. Acta Energiae Solaris Sinica, 2023, 44(12): 175-181.
[23]
KOUSOUNADIS-KNOUSEN M A, BAZIONIS I K, GEORGILAKI A P, et al. A review of solar power scenario generation methods with focus on weather classifications, temporal horizons, and deep generative models[J]. Energies, 2023, 16(15): 5600.
[24]
ZHENG L, SU R, SUN X, et al. Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output[J]. Energy, 2023, 271: 127009.
[25]
王飞,米增强,甄钊,等. 基于天气状态模式识别的光伏电站发电功率分类预测方法[J]. 中国电机工程学报2013, 33(34): 75-82, 14.
WANG Fei, MI Zengqiang, ZHEN Zhao, et al. A classified forecasting approach of power generation for photovoltaic plants based on weather condition pattern recognition[J]. Proceedings of the CSEE, 2013, 33(34): 75-82, 14.
[26]
全国气象防灾减灾标准化技术委员会降水量等级:GB/T 28592—2012[S]. 北京:中国标准出版社,2012.
[27]
ZHAO Z, WU C. Wheat quantity monitoring methods based on inventory measurement and SVR prediction model[J]. Applied Sciences, 2023, 13(23): 12745.
[28]
张未,余成波,王士彬,等. 基于VMD-LSTM-LightGBM的多特征短期电力负荷预测[J]. 南方电网技术2023, 17(2): 74-81.
ZHANG Wei, YU Chengbo, WANG Shibin, et al. Multi-featured short-term power load forecasting based on VMD-LSTM-LightGBM[J]. Southern Power System Technology, 2023, 17(2): 74-81.
[29]
徐武,刘洋,沈智方,等. 基于改进局部自注意力机制的VMD-GRU模型短期风电功率预测[J]. 电网与清洁能源2023, 39(3): 83-92.
XU Wu, LIU Yang, SHEN Zhifang, et al. Short-term wind power prediction based on VMD-GRU model with improved local self-attention mechanism[J]. Power System and Clean Energy, 2023, 39(3): 83-92.

基金

国家社会科学基金项目(21BJL098)

PDF(2181 KB)

Accesses

Citation

Detail

段落导航
相关文章

/