基于SVMD-BO-BiTCN的超短期光伏发电功率预测

何瑨麟,郝建新,苏成飞,屠壮壮

分布式能源 ›› 2024, Vol. 9 ›› Issue (5) : 22-31.

PDF(2667 KB)
PDF(2667 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (5) : 22-31. DOI: 10.16513/j.2096-2185.DE.2409503
学术研究

基于SVMD-BO-BiTCN的超短期光伏发电功率预测

作者信息 +

Ultra-Short-Term Photovoltaic Power Prediction Based on SVMD-BO-BiTCN

Author information +
文章历史 +

摘要

光照的间歇性使光伏发电功率波动性较大,导致光伏发电功率的预测准确率较低。为此,提出一种基于连续变分模态分解(successive variational mode decomposition,SVMD)、贝叶斯优化(Bayesian optimization,BO)算法和双向时序卷积网络(bidirectional temporal convolutional network, BiTCN)的超短期光伏发电功率预测模型,以提高预测精度。首先,通过SVMD将原始光伏发电功率分解为多个功率分量和功率残差,以获得多个波动性小的序列;然后,使用改进的BiTCN代替单向时序卷积网络(temporal convolutional network,TCN),完成低耗时下SVMD分解结果的双向特征提取与预测;之后,使用BO算法高效寻找BiTCN超参数,从而提高BiTCN对各功率分量和功率残差的预测精度;最后,求和并重构预测结果,实现超短期光伏发电功率预测。实验证明,该模型与单一的TCN模型相比,均方根误差(root mean square error,RMSE)减小了35.18%,决定系数提升了4.82%。

Abstract

Intermittent sunlight leads to significant fluctuations in photovoltaic power generation, resulting in low accuracy in predicting the power output. In this study, a new ultra-short-term photovoltaic power generation forecasting model based on successive variational mode decomposition (SVMD), Bayesian optimization (BO) algorithm, and bidirectional temporal convolutional network (BiTCN) is proposed to improve prediction accuracy. Initially, the raw photovoltaic power generation data is decomposed into multiple power components and a power residual using SVMD to obtain multiple sequences with small fluctuations. Subsequently, the improved BiTCN replaces the temporal convolutional network (TCN) to perform bidirectional feature extraction and prediction of the SVMD decomposition results with low latency. Then, BO algorithm is used to search for BiTCN hyperparameters efficiently, so as to improve the prediction accuracy of each power component and power residual. Finally, the predicted results are summed and reconstructed to achieve ultra-short-term photovoltaic power generation prediction. Experiments demonstrate that the proposed model achieves a 35.18% reduction in root mean square error (RMSE) and a 4.82% increase in coefficient of determination compared to the single TCN model.

关键词

光伏发电 / 发电功率预测 / 深度学习模型 / 连续变分模态分解(SVMD)

Key words

photovoltaic power generation / prediction of generating power / deep learning model / successive variational mode decomposition (SVMD)

引用本文

导出引用
何瑨麟, 郝建新, 苏成飞, . 基于SVMD-BO-BiTCN的超短期光伏发电功率预测[J]. 分布式能源. 2024, 9(5): 22-31 https://doi.org/10.16513/j.2096-2185.DE.2409503
Jinlin HE, Jianxin HAO, Chengfei SU, et al. Ultra-Short-Term Photovoltaic Power Prediction Based on SVMD-BO-BiTCN[J]. Distributed Energy Resources. 2024, 9(5): 22-31 https://doi.org/10.16513/j.2096-2185.DE.2409503
中图分类号: TK51   

参考文献

[1]
KABIR E, KUMAR P, KUMAR S, et al. Solar energy: Potential and future prospects[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 894-900.
[2]
王海峰,徐熠林,徐达艺,等. 基于高清卫星地图影像的配电网分布式屋顶光伏承载力评估[J]. 广东电力2023, 36(10): 105-113.
WANG Haifeng, XU Yilin, XU Dayi, et al. Evaluation of distributed rooftop photovoltaic hosting capacity in distribution networks based on high definition satellite map images[J]. Guangdong Electric Power, 2023, 36(10): 105-113.
[3]
武江,李建. 超短劲性复合桩基在光伏发电项目中的应用[J]. 内蒙古电力技术2023, 41(4): 26-31.
WU Jiang, LI Jian. Application of ultra-short stiffened composite pile foundation in photovoltaic power generation project[J]. Inner Mongolia Electric Power, 2023, 41(4): 26-31.
[4]
李英峰,张涛,张衡,等. 太阳能光伏光热高效综合利用技术[J]. 发电技术2022, 43(3): 373-391.
LI Yingfeng, ZHANG Tao, ZHANG Heng, et al. Efficient and comprehensive photovoltaic/photothermal utilization technologies for solar energy[J]. Power Generation Technology, 2022, 43(3): 373-391.
[5]
MAKA A O, ALABID J M. Solar energy technology and its roles in sustainable development[J]. Clean Energy, 2022, 6(3): 476-483.
[6]
CARNEIRO T C, DE CARVALHO P C M, ALVESDOSSANTOS H, et al. Review on photovoltaic power and solar resource forecasting: Current status and trends[J]. Journal of Solar Energy Engineering, 2022, 144(1): 010801.
[7]
LUO X, ZHANG D, ZHU X. Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge[J]. Energy, 2021, 225: 120240.
[8]
魏骜,茅大钧,韩万里,等. 基于EMD和长短期记忆网络的短期电力负荷预测研究[J]. 热能动力工程2020, 35(4): 203-209.
WEI Ao, MAO Dajun, HAN Wanli, et al. Short-term load forecasting based on EMD and long short-term memory neural networks[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4): 203-209.
[9]
NIU D, WANG K, SUN L, et al. Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: A case study[J]. Applied Soft Computing, 2020, 93: 106389.
[10]
WANG X, MA W. A hybrid deep learning model with an optimal strategy based on improved VMD and transformer for short-term photovoltaic power forecasting[J]. Energy, 2024, 295: 131071.
[11]
孟安波,许炫淙,陈嘉铭,等. 基于强化学习和组合式深度学习模型的超短期光伏功率预测[J]. 电网技术2021, 45(12): 4721-4728.
MENG Anbo, XU Xuancong, CHEN Jiaming, et al. Ultra short term photovoltaic power prediction based on reinforcement learning and combined deep learning model[J]. Power System Technology, 2021, 45(12): 4721-4728.
[12]
史加荣,殷诏. 基于GRU-BLS的超短期光伏发电功率预测[J]. 智慧电力2023, 51(9): 38-45.
SHI Jiarong, YIN Zhao. Prediction of ultra short term photovoltaic power generation based on GRU-BLS[J]. Smart Power, 2023, 51(9): 38-45.
[13]
HEO J, SONG K, HAN S U, et al. Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting[J]. Applied Energy, 2021, 295: 117083.
[14]
BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-04-19)[2023-11-15].
[15]
邢晨,张照贝. 基于改进时间卷积网络的短期光伏出力概率预测方法[J]. 太阳能学报2023, 44(2): 373-380.
XING Chen, ZHANG Zhaobei. Short-term probabilistic forecasting method of photovoltaic output power based on improved temporal convolutional network [J]. Acta Energiae Solaris Sinica, 2023, 44(2): 373-380.
[16]
NAZARI M, SAKHAEI S M. Successive variational mode decomposition[J]. Signal Processing, 2020, 174: 107610.
[17]
VARGASHERNÁNDEZ R A. Bayesian optimization for calibrating and selecting hybrid-density functional models[J]. The Journal of Physical Chemistry A, 2020, 124(20): 4053-4061.
[18]
HANIN B. Universal function approximation by deep neural nets with bounded width and ReLU activations[J]. Mathematics, 2019, 7(10): 992.
[19]
ALAEDDINE H, JIHENE M. Deep residual network in network[J]. Computational Intelligence and Neuroscience, 2021, 1: 6659083.
[20]
SONG Z, LIU J, YANG H. Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review[J]. Applied Energy, 2021, 298: 117247.
[21]
HASAN K, YOUSUF S B, DAS B K, et al. Effects of different environmental and operational factors on the PV performance: A comprehensive review[J]. Energy Science & Engineering, 2022, 10(2): 656-675.
[22]
ZHOU H, WANG J, OUYANG F, et al. A two-stage method for ultra-short-term PV power forecasting based on data-driven[J]. IEEE Access, 2023, 11: 41175-41189.
[23]
杨汪洋,魏云冰,罗程浩. 基于CVMD-TCN-BiLSTM的短期电力负荷预测[J]. 电气工程学报2024, 19(2): 163-172.
YANG Wangyang, WEI Yunbing, LUO Chenghao. Short-term electricity load forecasting based on CVMD-TCN-BiLSTM [J]. Journal of Electrical Engineering, 2024, 19(2): 163-172.
[24]
ZIANE A, NECAIBIA A, SAHOUANE N, et al. Photovoltaic output power performance assessment and forecasting: Impact of meteorological variables[J]. Solar Energy, 2021, 220: 745-757.

基金

国家级大学生创新创业项目(202310059004)
中国民航大学大学生创新创业资助项目(IECAUC2023129)

PDF(2667 KB)

Accesses

Citation

Detail

段落导航
相关文章

/