含多个投资主体的独立供电微网群运行策略

郑弘奇,张芳颖,林佩伶,江岳文

分布式能源 ›› 2024, Vol. 9 ›› Issue (5) : 41-49.

PDF(1174 KB)
PDF(1174 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (5) : 41-49. DOI: 10.16513/j.2096-2185.DE.2409505
学术研究

含多个投资主体的独立供电微网群运行策略

作者信息 +

Operation Strategy of Independent Power Supply Microgrid Cluster With Multiple Investment Entities

Author information +
文章历史 +

摘要

在绿色经济和新能源快速发展的背景下,可再生能源供电得到了迅速发展。为应对分布式能源波动性大、抗干扰能力较弱的问题,探索以可再生能源供电为主的独立供电微网群运行策略具有重要意义。根据微电网的规划建设及相应控制模式,提出了微电网独立运行与互联运行的策略。为了减少微电网独立运行中的弃风、弃光现象,提高其经济效益,以最小化微电网独立运行成本和最大化微电网互联运行社会效益为目标,建立了涵盖微电网内部调度与微电网间调度的双层优化模型。采用交替方向乘子法(alternating direction multiplier, ADM)进行迭代求解,以获得兼顾各个微网络体及其群体整体运营效益的可再生能源输出功率、储能输出功率以及购售电策略。最后,通过对14节点独立供电微网群进行仿真分析,验证了所提模型的合理性及方法的有效性。

Abstract

Under the background of the rapid development of green economy and new energy, renewable energy power supply has been developed rapidly. In order to deal with the problems of high volatility and weak anti-interference ability of distributed energy, it is of great significance to explore the operation strategy of independent power supply microgrid group dominated by renewable energy. According to the planning and construction of microgrid and the corresponding control mode, the independent operation and interconnected operation strategies of microgrid are proposed. In order to reduce the phenomenon of abandoned wind and light in the independent operation of microgrid and improve its economic benefits, this paper established a bi-level optimization model covering the internal and inter-microgrid scheduling with the goal of minimizing the independent operation cost of microgrid and maximizing the social benefits of microgrid interconnected operation. The alternating direction multiplier (ADM) method is used to solve the problem iteratively to obtain the renewable energy output power, the energy storage output power, and the electricity purchase and sale strategy that take into account the overall operation efficiency of each micro-network body and its group. Finally, through the simulation analysis of 14-node independent power supply microgrid group, the rationality of the proposed model and the effectiveness of the method are verified.

关键词

微网群 / 互联运行 / 双层优化模型 / 交替乘子法(ADM) / 分布式能源

Key words

microgrid cluster / interconnected operation / bi-layer optimization model / alternating direction multiplier (ADM) / distributed energy

引用本文

导出引用
郑弘奇, 张芳颖, 林佩伶, . 含多个投资主体的独立供电微网群运行策略[J]. 分布式能源. 2024, 9(5): 41-49 https://doi.org/10.16513/j.2096-2185.DE.2409505
Hongqi ZHENG, Fangying ZHANG, Peiling LIN, et al. Operation Strategy of Independent Power Supply Microgrid Cluster With Multiple Investment Entities[J]. Distributed Energy Resources. 2024, 9(5): 41-49 https://doi.org/10.16513/j.2096-2185.DE.2409505
中图分类号: TK01   

参考文献

[1]
许龙,王庆刚,杨谋存,等. 计及资源禀赋的全可再生能源多能互补系统评价指标体系[J]. 电网技术2022, 46(10): 4012-4019.
XU Long, WANG Qinggang, YANG Moucun, et al. Evaluation index system of fully renewable energy multi-energy complementary system considering renewable resource endowment[J]. Power System Technology, 2022, 46(10): 4012-4019.
[2]
PAN Y, DONG F. Dynamic evolution and driving factors of new energy development: Fresh evidence from China[J]. Technological Forecasting and Social Change, 2022, 176: 121475.
[3]
杨洁,吴志强,范宏. 基于实时电价的含储能可再生能源系统协同调度策略[J]. 智慧电力2023, 51(4): 46-53.
YANG Jie, WU Zhiqiang, FAN Hong. Collaborative scheduling strategy for renewable energy systems with energy storage based on real time price[J]. Smart Power, 2023, 51(4): 46-53.
[4]
张宁,朱昊,杨凌霄,等. 考虑可再生能源消纳的多能互补虚拟电厂优化调度策略[J]. 发电技术2023, 44(5): 625-633.
ZHANG Ning, ZHU Hao, YANG Lingxiao, et al. Optimal scheduling strategy of multi-energy complementary virtual power plant considering renewable energy consumption[J]. Power Generation Technology, 2023, 44(5): 625-633.
[5]
游磊,金小明,刘云. 计及燃气-蒸汽联合循环机组和风电消纳的热电联合调度模型[J/OL]. 南方能源建设:1-11.
YOU Lei, JIN Xiaoming, LIU Yun. Combined heat and power dispatch model considering gas-steam combined cycle unit and wind power accommodation[J/OL]. Southern Energy Construction: 1-11.
[6]
朱煌武,徐宏耀,吴邦勇. 安徽打造具有全球影响力的先进光伏产业集群的优势、问题与对策[J]. 今日科苑2024(1): 34-43+93.
ZHU Huangwu, XU Hongyao, WU Bangyong. Research and recommendations on the benefits and drawbacks of constructing a worldwide highly influential advanced photovoltaic industry cluster in Anhui[J]. Modern Science, 2024(1): 34-43+93.
[7]
马立红,梁亚峰,邱剑洪,等. 锁相锁幅控制技术及其在孤立海岛微电网的应用[J/OL]. 南方电网技术:1-8.
MA Lihong, LIANG Yafeng, QIU Jianhong, et al. Amplitude-phase-locked-loop control technology and its application in the isolated island micro grid[J/OL]. Southern Power System Technology: 1-8.
[8]
夏晨阳,杨子健,周娟,等. 基于新型电力系统的储能技术研究[J]. 内蒙古电力技术2022, 40(4): 3-12.
XIA Chenyang, YANG Zijian, ZHOU Juan, et al. Research of energy storage technology based on new power system[J]. Inner Mongolia Electric Power, 2022, 40(4): 3-12.
[9]
武梦景,万灿,宋永华,等. 含多能微网群的区域电热综合能源系统分层自治优化调度[J]. 电力系统自动化2021, 45(12): 20-29.
WU Mengjing, WAN Can, SONG Yonghua, et al. Hierarchical autonomous optimal dispatching of district integrated heating and power system with multi-energy microgrids[J]. Automation of Electric Power Systems, 2021, 45(12): 20-29.
[10]
朱祖祥,朱革兰,秦飞翔. 基于博弈的多综合能源微网系统优化运行策略[J]. 广东电力2023, 36(2): 52-65.
ZHU Zuxiang, ZHU Gelan, QIN Feixiang. Optimal operation strategy of multi-integrated energy microgrid system based on game[J]. Guangdong Electric Power, 2023, 36(2): 52-65.
[11]
SPIEGEL M H, VEITH E M S P, STRASSER T I. The spectrum of proactive, resilient multi-microgrid scheduling: A systematic literature review[J]. Energies, 2020, 13(17): 4543-4543.
[12]
ZHANG Fan, MU Longhua. New protection scheme for internal fault of multi-microgrid[J]. Protection and Control of Modern Power Systems, 2019, 4(1): 1-12
[13]
周林,吕智林. 多微网最优潮流功率调度及协同优化控制策略[J]. 现代电力2021, 38(5): 473-484.
ZHOU Lin, Zhilin. Multi-microgrid optimal power flow dispatching and collaborative optimization control strategy[J]. Modern Electric Power, 2021, 38(5): 473-484.
[14]
翁栩. 微网群规划技术现状与展望[J]. 大众用电2022, 37(9): 37-38.
[15]
吴红斌,孙瑞松,蔡高原. 多微网互联系统的动态经济调度研究[J]. 太阳能学报2018, 39(5): 1426-1433.
WU Hongbin, SUN Ruisong, CAI Gaoyuan. Dynamic economic dispatch for multi-microgrid interconnection system[J]. Acta Energiae Solaris Sinica, 2018, 39(5): 1426-1433.
[16]
陈友芹,蒋炯,殷展翔,等. 基于NCPSO的微网群优化调度策略研究[J]. 太阳能学报2022, 43(8): 477-483.
CHEN Youqin, JIANG Jiong, YIN Zhanxiang, et al. Research on optimal scheduling strategy of microgridclusters based on ncpso[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 477-483.
[17]
林玲,谢宇哲,周盛,等. 基于场景分析的冷热电气联供型微能源网多目标优化调度[J]. 能源工程2021(3): 84-92.
LIN Ling, XIE Yuzhe, ZHOU Sheng, et al. Hybrideasurement usion stimation ethod for istribution etwork onsidering easurement synchrony[J]. Energy Engineering, 2021(3): 84-92.
[18]
姚路锦,王玮,林宏宇,等. 计及低碳经济运行的含风电微网群源储协同日前优化调度[J]. 动力工程学报2024, 44(3): 462-474.
YAO Lujin, WANG Wei, LIN Hongyu, et al. Day-ahead optimal scheduling of wind powered microgrid cluster with source-storage collaboration taking into account low-carbon economic operation[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 462-474.
[19]
胡兰. 基于需求侧响应的光伏微网群协同调度方法[J]. 中国能源2023, 45(8): 45-55.
HU Lan. Collaborative scheduling method for photovoltaic microgrid groups based on demand side response[J]. Energy of China, 2023, 45(8): 45-55.
[20]
何光宇,范帅,李祖毅,等. 适应新型电力系统的电力互替品市场——(一)理念与构想[J]. 电力系统自动化2024, 48(9): 54-66.
HE Guangyu, FAN Shuai, LI Zuyi, et al. Substitute power product market suitable for new power system—part one conceptualization and consideration[J]. Automation of Electric Power Systems, 2024, 48(9): 54-66.
[21]
MOLZAHN D K, DÖRFLER F, SANDBERG H, et al. A survey of distributed optimization and control algorithms for electric power systems[J]. IEEE Transactions on Smart Grid, 2017, 8(6): 2941-2962.

基金

国网福建省电力有限公司科技项目(SGTYHT/21-JS-223)

PDF(1174 KB)

Accesses

Citation

Detail

段落导航
相关文章

/