PDF(2151 KB)
PDF(2151 KB)
PDF(2151 KB)
基于常量附加频差平方正反馈的无功扰动孤岛检测法
Reactive Power Disturbance Islanding Detection Method Based on Constant Combined With Positive Feedback of the Square of Frequency Deviation
为解决现有孤岛检测方法存在检测盲区及检测时间较长等问题,提出一种常量小扰动复合频差影响的改进型无功扰动孤岛检测方法。分析孤岛时分布式电源注入无功功率扰动与并网点频率偏移的关系,设计常量扰动与频率差值平方正反馈扰动相结合的无功扰动生成方法,其中常量扰动产生初始频率偏移,附加扰动增强频差-无功的扰动响应速度,同时减小并网运行频率波动时的影响;综合孤岛检测时间和扰动对电能质量影响的要求,优化设计扰动系数及扰动周期等参数,并给出孤岛检测实现流程。仿真结果表明:改进型无功扰动孤岛检测方法能克服孤岛检测盲区的影响,较传统正反馈无功扰动法显著缩短孤岛检测时间,最大可缩短52.5%,且几乎不产生电能质量问题,验证了该方法的正确性和有效性。
In order to address the issues of the non-detection zone and extended detection time in existing islanding detection methods, an improved reactive power disturbance islanding detection method incorporating the effects of constant small perturbation and compound frequency difference is proposed. The relationship between the reactive power perturbation injected by distributed generation and the frequency offset at the point of common coupling is analyzed. A reactive disturbance generation method that combines constant disturbance and positive feedback of the square of frequency deviation is designed. In this method, a constant perturbation generates an initial frequency offset, while additional perturbations enhance the frequency difference-reactive power perturbation response speed and reduce the impact of frequency fluctuations in grid-connected mode. Parameters such as disturbance coefficient and disturbance period are designed by synthesizing the requirements of islanding detection time and the impact of disturbances on power quality, and the implementation process of islanding detection is provided. Simulation results indicate that the improved reactive power disturbance islanding detection method effectively overcomes the challenges posed by the non-detection zone. Compared with the traditional positive feedback reactive power perturbation method, the islanding detection time is significantly reduced, with a maximum reduction of 52.5%, while almost does not exacerbate the impact on power quality. These results substantiate the correctness and effectiveness of the proposed method.
配电网 / 分布式电源 / 正反馈 / 孤岛检测 / 无功扰动
distribution networks / distributed generation / positive feedback / islanding detection / reactive power disturbance
| [1] |
朱灿元,杨超,李舒涛,等. 考虑清洁能源与储能的分布式数据中心低碳调度策略[J]. 智慧电力,2023, 51(2): 16-23.
|
| [2] |
陈逸文,赵晋斌,李军舟,等. 电力低碳转型背景下氢储能的挑战与展望[J]. 发电技术,2023, 43(3): 296-304.
|
| [3] |
祁兵,赵燕玲,杜亚彬,等. 双碳背景下基于需求响应的虚拟电厂调度策略研究[J]. 内蒙古电力技术,2022, 40(1): 33-37.
|
| [4] |
陈程,林仕立,张先勇,等. 基于NSGA-Ⅱ算法的分布式冷热电联产系统低碳经济运行策略[J]. 广东电力,2023, 36(10): 10-18.
|
| [5] |
李书勇,蔡海青,沈娜,等. 不同类型新能源接入对微电网频率的影响[J]. 分布式能源,2024, 9(2): 8-18.
|
| [6] |
孙文文,张君,张祥成,等. 基于零序电压相位变化的分布式光伏发电孤岛保护方法 [J]. 分布式能源,2022, 7(3): 72-77.
|
| [7] |
张军,张新慧,黄超艺,等. 基于逆变器定频率控制的多分布式电源孤岛检测方法[J]. 电力系统自动化,2022, 46(4): 123-131.
|
| [8] |
IEEE Power and Energy Society. IEEE recommended practice for utility interface of photovoltaic(PV)systems: IEEE Std. 929—2000 [S]. New York: Institute of Electrical and Electronics Engineers, 2000: 1-32.
|
| [9] |
中国电力企业联合会. 分布式电源并网技术要求:GB/T 33593—2017 [S]. 北京:中国标准出版社,2017: 3-5.
|
| [10] |
孙振奥,杨子龙,王一波,等. 适用于分布式多逆变器系统的混合孤岛检测法[J]. 中国电机工程学报,2016, 36(13): 3590-3597, 3378.
|
| [11] |
俞侃,雍静,梁仕斌,等. 电力线信号技术的改进分布式发电系统孤岛检测方法[J]. 中国电机工程学报,2015, 35(13): 3283-3291.
|
| [12] |
|
| [13] |
李文龙,张新慧,王蕾,等. 基于频率变化率的被动式孤岛检测方法[J]. 智慧电力,2024, 52(3): 47-54.
|
| [14] |
宋璇,彭特,白晨曦,等. 多机下无功扰动孤岛检测法的改进与参数设计[J]. 电力电子技术,2023, 57(12): 105-108.
|
| [15] |
张军,张新慧,彭克,等. 基于零序电压正反馈控制的多分布式电源孤岛检测方法[J]. 高电压技术,2023, 49(7): 3040-3050.
|
| [16] |
吴宇奇,马啸,叶雨晴,等. 适应多控制逆变器不同工况的混合式孤岛检测策略[J]. 高电压技术,2020, 46(11): 3887-3895.
|
| [17] |
周林,谢星宇,郝高锋,等. 一种新型的无功功率扰动孤岛检测方法[J]. 太阳能学报,2020, 41(2): 275-283.
|
| [18] |
王炜煜,陈阿莲. 一种改进的无功电流—频率正反馈孤岛检测方法[J]. 电源学报,2016, 14(5): 54-59, 67.
|
| [19] |
鲍晓婷,陈永强,张超,等. 一种改进的频率正反馈无功电流扰动孤岛检测研究[J]. 电测与仪表,2018, 55(15): 25-30.
|
| [20] |
戴志辉,何静远,于礼瑞,等. 基于谐波电压突变的无功功率扰动孤岛检测法[J]. 电机与控制学报,2023, 27(3): 10-20.
|
| [21] |
邵美阳,张子墨,王露缙,等. 一种无功功率扰动的孤岛检测新方法[J]. 电网与清洁能源,2023, 39(6): 98-107, 114.
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
杨滔,王鹿军,张冲,等. 基于无功电流—频率正反馈的孤岛检测方法[J]. 电力系统自动化,2012, 36(14): 193-199.
|
/
| 〈 |
|
〉 |