PDF(5914 KB)
PDF(5914 KB)
PDF(5914 KB)
槽式聚光器镜面高压气流除尘实验研究
Experimental Study on Dust Removal by High Pressure Air Flow in Mirror of Trough Condenser
太阳能聚光系统的镜面积尘不仅降低了光电转换效率,还缩短了系统的使用寿命。为此,搭建了槽式聚光镜面压缩空气除尘系统。运用扫描电子显微镜、激光粒度分析仪、X射线衍射仪和X射线荧光光谱仪等仪器,对积尘颗粒的晶体结构、尺寸分布、元素种类及其占比进行了分析。通过压缩空气除尘系统研究了风刀喷头的入口压力,镜面倾角,除尘高度对除尘效率的影响。结果表明,直径小于10 μm的颗粒在积尘中所占比例超过50%,其中石英和白云母是积尘颗粒中主要的物质成分。积尘颗粒中的元素含量差异显著,氧元素含量最高,其次是硅元素,而氢元素的含量最低。除尘效率随着除尘压力的增加、镜面布置的倾角增大以及风刀喷头的除尘角度和高度减小而提高,最高除尘效率可达98.94%,此时镜面的积尘密度为0.03 g/m2,反射率为98.94%。
The mirror area dust of solar concentrating system not only reduces the photoelectric conversion efficiency, but also shortens the service life of the system. Therefore, a trough type condenser mirror compressed air dust removal system is built. The crystal structure, size distribution, element types and proportion of the dust particles were analyzed by scanning electron microscope, laser particle size analyzer, X-ray difftometer and X-ray fluorescence spectrometer. Through the compressed air dust removal system, the influence of inlet pressure, mirror inclination and dust removal height on dust removal efficiency is studied. The results show that the particles smaller than 10 μm in diameter account for more than half of the dust particles, and quartz and muscotite are the main material components in the dust particles. The content of elements in the dust particles was significantly different, with the highest content of oxygen, followed by silicon, and the lowest content of hydrogen. The dust removal efficiency increases with the increase of dust removal pressure, the increase of the inclination angle of the mirror arrangement, and the decrease of the dust removal angle and height of the air knife nozzle, and the highest dust removal efficiency can reach 98.94%. At this time, the dust accumulation density of the mirror is 0.03 g/m2, and the reflectance is 98.94%.
槽式聚光吸热系统 / 积尘颗粒 / 物质组成 / 压缩空气除尘 / 除尘效率
trough concentrating heat absorption system / dust particles / material composition / compressed air dust removal / dust removal efficiency
| [1] |
赵耀华,鲁啸山,刁彦华,等. 复合抛物面聚光式太阳能空气集蓄热一体化系统性能研究[J]. 北京工业大学学报,2022, 48(7): 750-761.
|
| [2] |
卢乃兵,刘万军,尹航. 高原地区槽式光热电站导热油泄漏监测装置应用研究[J]. 内蒙古电力技术,2022, 40(6): 13-16.
|
| [3] |
常泽辉,刘雪东,刘静,等. 吸收体形状对太阳能复合多曲面聚光器光热性能的影响[J]. 光学学报,2022, 42(5): 32-41.
|
| [4] |
郭宴秀,苏建军,马临超,等. 基于IT2FLC的HESS太阳能充电站功率分配策略[J]. 智慧电力,2022, 50(5): 62-68, 76.
|
| [5] |
|
| [6] |
王杨,轩雪飞,朱路,等. 超宽带高吸收超材料太阳能吸收器设计[J]. 中国激光,2022, 49(9): 50-61.
|
| [7] |
徐立,孙飞虎,李钧,等. 抛物面槽式太阳能集热器热损失因素研究[J]. 发电技术,2023, 44(2): 229-234.
|
| [8] |
董晓明,吴玉庭,张灿灿,等. 槽式太阳能聚光集热器热力学分析及聚光集热系统动态特性仿真[J]. 北京工业大学学报,2024, 50(8): 1007-1026.
|
| [9] |
刘润鹏,宋禹飞,王宏,等. 太阳能光热发电标准体系研究[J]. 广东电力,2023, 36(10): 130-136.
|
| [10] |
|
| [11] |
王迪,王华. 天气对槽式太阳能集热系统热性能的影响[J]. 太阳能,2023(12): 59-66.
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
赵晓燕,闫素英,邢耀栋,等. 基于镜面积尘的线性菲涅尔系统聚光性能研究[J]. 太阳能学报,2022, 43(5): 206-212.
|
| [16] |
王亚辉,苏日力格,赵宁,等. 镜面积尘物化特性及其对菲涅耳高倍聚光光伏及光热系统的影响[J]. 光学学报,2024, 44(5): 109-119.
|
| [17] |
|
| [18] |
陈泽粮,张宏立. 基于压缩空气的太阳能电池板除尘建模研究[J]. 计算机仿真,2018, 35(9): 79-83.
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
闫素英,常征,王峰,等. 积尘对槽式太阳能聚光器焦面能流密度分布的影响及聚光优化[J]. 光学学报,2017, 37(7): 239-246.
|
| [27] |
金胜利,郭振兴,干建丽,等. 光伏电站组件清洁技术研究综述[J]. 能源工程,2023, 43(5): 1-11.
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
姚关雄,王力,吴宇航,等. 太阳能板除尘机器人设计研究[J]. 机械工程与自动化,2023(2): 94-96.
|
| [32] |
|
| [33] |
张永伟. 纳米自清洁薄膜在光伏电站中的应用[J]. 太阳能,2021(12): 43-50.
|
| [34] |
杨鲲鹏,杜道强,王伟,等. 一种光伏板自除尘清扫系统的研究[J]. 微型电脑应用,2023, 39(6): 82-85.
|
/
| 〈 |
|
〉 |