基于改进型Smith预估计器与大数据的光伏电网调频逐步惯性控制方法

杨丽娜,马梅芳,薛高倩,刘长胜,申少辉

分布式能源 ›› 2024, Vol. 9 ›› Issue (5) : 85-92.

PDF(4891 KB)
PDF(4891 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (5) : 85-92. DOI: 10.16513/j.2096-2185.DE.2409510
应用技术

基于改进型Smith预估计器与大数据的光伏电网调频逐步惯性控制方法

作者信息 +

A Stepwise Inertial Control Method for Photovoltaic Grid Frequency Adjustment Based on Improved Smith Predictor and Big Data

Author information +
文章历史 +

摘要

光伏电网频率调整过程中,依靠常规Smith预估控制器实现电网调频控制,对模型精度具有较强的依赖性,控制策略实施后最大频率变化率(rate of change of frequency,RoCoF)较大。因此,提出基于改进型Smith预估计器与大数据的光伏电网调频逐步惯性控制方法。首先,采集历史气象数据和光伏电网运行数据,应用大数据分析领域的密度峰值聚类算法进行划分处理,再筛选相似日数据输入长短期记忆网络中,预测出未来光伏发电的功率变化;然后,依托逐步惯性控制思想,设计包含短时超发、转速恢复等多个阶段的电网调频控制策略,将模糊自适应比例-积分-微分(proportion-integration-differentiation,PID)控制器融入常规Smith预估计器,从而升级得到优化版的Smith预估计器;最后,在不受被控模型变化影响的情况下,依据预估补偿原理完成逐步惯性调频控制,并应用麻雀搜索算法求解出最优控制参数。实验结果表明:该控制方法实施后,光伏电网运行过程中最大RoCoF仅为0.086 Hz/s,有效降低了对模型精度的依赖性,保证了电力系统的稳定运行。

Abstract

In the process of frequency adjustment in photovoltaic power grids, relying on conventional Smith predictive controllers to achieve grid frequency adjustment control has a strong dependence on the accuracy of the model, and the maximum rate of change of frequency (RoCoF) after the implementation of the control strategy is large. Therefore, a stepwise inertial control method for photovoltaic grid frequency adjustment based on an improved Smith predictor and big data is proposed. First, the historical meteorological data and photovoltaic power grid operation data are collected, and the density peak clustering algorithm in the field of big data analysis is applied for partition processing, and then the data of similar days are screened into the long and short term memory network to predict the power change of photovoltaic power generation in the future. Then, based on the idea of stepwise inertia control, the frequency adjustment control strategy of power grid is designed, including short-time overdrive, speed recovery and other stages. The fuzzy adaptive proportion-integration-differentiation (PID) controller is integrated into the conventional Smith predictor. Thus, the optimized Smith predictor is upgraded. Finally, under the condition of not being affected by the change of the controlled model, the stepwise inertial frequency adjustment control is completed according to the predictive compensation principle, and the sparrow search algorithm is used to solve the optimal control parameters. The experimental results show that after the implementation of the control method, the maximum RoCoF during the operation of the photovoltaic power grid is only 0.086 Hz/s, which effectively reduces the dependence on the accuracy of the model and ensures the stable operation of the power system.

关键词

改进型Smith预估计器 / 大数据 / 光伏电网 / 频率调整 / 逐步惯性控制 / 参数优化

Key words

improved Smith predictor / big data / photovoltaic power grid / frequency adjustment / stepwise inertial control / parameter optimization

引用本文

导出引用
杨丽娜, 马梅芳, 薛高倩, . 基于改进型Smith预估计器与大数据的光伏电网调频逐步惯性控制方法[J]. 分布式能源. 2024, 9(5): 85-92 https://doi.org/10.16513/j.2096-2185.DE.2409510
Lina YANG, Meifang MA, Gaoqian XUE, et al. A Stepwise Inertial Control Method for Photovoltaic Grid Frequency Adjustment Based on Improved Smith Predictor and Big Data[J]. Distributed Energy Resources. 2024, 9(5): 85-92 https://doi.org/10.16513/j.2096-2185.DE.2409510
中图分类号: TK01; TM76   

参考文献

[1]
屈兴武,王栋,马天诚,等. 支撑电网频率稳定的双馈风机一次调频控制需求分析[J]. 智慧电力2023, 51(10): 38-46.
QU Xingwu, WANG Dong, MA Tiancheng, et al. Requirement analysis of DFIG primary frequency regulation control supporting grid frequency stability[J]. Smart Power, 2023, 51(10): 38-46.
[2]
肖瑶,钮文泽,魏高升,等. 太阳能光伏/光热技术研究现状与发展趋势综述[J]. 发电技术2022, 43(3): 392-404.
XIAO Yao, NIU Wenze, WEI Gaosheng, et al. Review on research status and developing tendency of solar photovoltaic/thermal technology[J]. Power Generation Technology, 2022, 43(3): 392-404.
[3]
刘宇,赵映,李世朝. 光伏发电系统在火力发电厂的应用研究[J]. 内蒙古电力技术2022, 40(2): 36-39.
LIU Yu, ZHAO Ying, LI Shizhao. Research on application of photovoltaic power generation system in thermal power plant[J]. Inner Mongolia Electric Power, 2022, 40(2): 36-39.
[4]
李慧玲,王维军,廖亚特,等. 基于电动汽车充电管理的村级光伏发电系统公用储能配置优化研究[J]. 广东电力2023, 36(12): 30-38.
LI Huiling, WANG Weijun, LIAO Yate, et al. Optimization study of public energy storage configuration for village photovoltaic power generation system based on electric vehicle charging management[J]. Guangdong Electric Power, 2023, 36(12): 30-38.
[5]
SAXENA A, SHANKAR R, PARIDA S K, et al. Demand response based optimally enhanced linear active disturbance rejection controller for frequency regulation in smart grid environment[J]. IEEE Transactions on Industry Applications, 2022, 58(4): 4337-4349.
[6]
陈鹏,王玮,杨建青,等. 基于多尺度分解的风火储协同调频控制策略[J]. 太阳能学报2024, 45(3): 428-435.
CHEN Peng, WANG Wei, YANG Jianqing, et al. Cooperative frequency regulation control strategy of wind-thermal-storage system based on multi-scale decomposition[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 428-435.
[7]
黎萌,林章岁,林毅,等. 基于改进模型预测控制的分布式储能辅助调频控制方法[J]. 水利水电技术2023, 54(): 447-456.
摘要
S2
LI Meng, LIN Zhangsui, LIN Yi, et al. Distributed energy storage assisted frequency control method based on improved model predictive control[J]. Water Resources and Hydropower Engineering, 2023, 54(): 447-456.
S2
[8]
姚文龙,裴春博,池荣虎,等. 基于无模型自适应控制的船舶微电网二次调频控制策略[J]. 电机与控制学报2023, 27(3): 135-146.
YAO Wenlong, PEI Chunbo, CHI Ronghu, et al. Secondary frequency modulation control strategy of ship microgrid with model-free adaptive control [J]. Electric Machines and Control, 2023, 27(3): 135-146.
[9]
余洋,张瑞丰,陆文韬,等. 基于稳定经济模型预测控制的集群电动汽车辅助电网调频控制策略[J]. 电工技术学报2022, 37(23): 6025-6040.
YU Yang, ZHANG Ruifeng, LU Wentao, et al. Auxiliary frequency regulation control strategy of aggregated electric vehicles based on lyapunov-based economic model predictive control[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6025-6040.
[10]
颜全椿,顾文,范立新,等. 储能协助风电机组参与电网调频控制策略研究[J]. 现代电力2022, 39(5): 537-546.
YAN Quanchun, GU Wen, FAN Lixin, et al. Energy storage assists wind turbines to participate in grid frequency regulation control strategy research[J]. Modern Electric Power, 2022, 39(5): 537-546.
[11]
邹燕,于国强,罗凯明,等. 基于改进粒子群的火储联合AGC调频控制仿真[J]. 计算机仿真2022, 39(7): 128-136.
ZOU Yan, YU Guoqiang, LUO Kaiming, et al. Simulation of improved particle swarm optimization-based thermal power-energy storage combined AGC frequency regulation control[J]. Computer Simulation, 2022, 39(7): 128-136.
[12]
徐箭,谭昌奇,廖思阳,等. 考虑需求侧管理的孤岛微电网频率协调控制策略[J]. 武汉大学学报(工学版), 2022, 55(9): 886-893.
XU Jian, TAN Changqi, LIAO Siyang, et al. Coordinated control strategy of island microgrid frequency considering demand side management[J]. Engineering Journal of Wuhan University, 2022, 55(9): 886-893.
[13]
于琳琳,王传捷,张峰,等. 计及SOC均衡的电池储能参与电网一次调频自适应控制策略研究[J]. 可再生能源2023, 41(5): 685-691.
YU Linlin, WANG Chuanjie, ZHANG Feng, et al. Research on adaptive control strategy of primary frequency modulation of power grid with battery storage considering SOC equalization[J]. Renewable Energy Resources, 2023, 41(5): 685-691.
[14]
于昌海,庞腊成,吴继平,等. 计及多点电池储能系统的电网二次调频协同控制[J]. 电力工程技术2024, 43(1): 68-76.
YU Changhai, PANG Lacheng, WU Jiping, et al. Coordination control for secondary frequency regulation with participation of multiple battery energy storage systems[J]. Electric Power Engineering Technology, 2024, 43(1): 68-76.
[15]
鲁宗相,李佳明,乔颖,等. 新能源场站快速频率支撑能力评估研究现状与技术展望[J]. 电力系统自动化2024, 48(10): 1-19.
LU Zongxiang, LI Jiaming, QIAO Ying, et al. Research status and technology prospects of fast frequency support capability assessment for renewable energy stations[J]. Automation of Electric Power Systems, 2024, 48(10): 1-19.
[16]
高丙团,胡正阳,王伟胜,等. 新能源场站快速有功控制及频率支撑技术综述[J]. 中国电机工程学报2024, 44(11): 4335-4352.
GAO Bingtuan, HU Zhengyang, WANG Weisheng, et al. Review on fast active power control and frequency support technologies of renewable energy stations[J]. Proceedings of the CSEE, 2024, 44(11): 4335-4352.
[17]
杨昆,郝尧,孙磊,等. 基于综合能源储能渗透率的碳排放调频辅助研究[J]. 电测与仪表2024, 61(5): 24-30.
YANG Kun, HAO Yao, SUN Lei, et al. Auxiliary research on carbon emission frequency modulation based on comprehensive energy storage permeability[J]. Electrical Measurement & Instrumentation, 2024, 61(5): 24-30.
[18]
刘印,陈民权,李京,等. 电力系统低频减载的单调控制特性[J]. 电力自动化设备2023, 43(7): 182-189.
LIU Yin, CHEN Minquan, LI Jing, et al. Monotonic control characteristics of under-frequency load shedding in power system[J]. Electric Power Automation Equipment, 2023, 43(7): 182-189.
[19]
郭强,陈崇德,胡阳,等. 飞轮和锂电池储能联合光伏发电一次调频控制[J]. 电力系统及其自动化学报2023, 35(11): 1-9.
GUO Qiang, CHEN Chongde, HU Yang, et al. Flywheel and lithium battery energy storage combined with photovoltaic power generation participating in primary frequency regulation control[J]. Proceedings of the CSU-EPSA, 2023, 35(11): 1-9.
[20]
颜湘武,张世峥,贾焦心. 光伏机组虚拟惯量控制下电力系统频率特性分析[J]. 可再生能源2023, 41(1): 81-89.
YAN Xiangwu, ZHANG Shizheng, JIA Jiaoxin. Analysis of frequency characteristics of power system under photovoltaic power plant with virtual inertia control[J]. Renewable Energy Resources, 2023, 41(1): 81-89.
[21]
朱慧敏,苑舜,李春来. 含储能环节的光伏电站虚拟同步发电机控制策略与分析[J]. 电测与仪表2023, 60(5): 45-50.
ZHU Huimin, YUAN Shun, LI Chunlai. Control strategy and analysis of virtual synchronous generator of photovoltaic power plant with energy storage link[J]. Electrical Measurement & Instrumentation, 2023, 60(5): 45-50.
[22]
罗澍忻,朱廷猛,余浩,等. 考虑频率稳定约束的电网新能源承载能力评估方法及其应用[J]. 南方电网技术2023, 17(10): 65-76.
LUO Shuxin, ZHU Tingmeng, YU Hao, et al. Evaluation method and application of carrying capacities of new energy in power grid considering the constraints of frequency stability[J]. Southern Power System Technology, 2023, 17(10): 65-76.
[23]
郑云平,亚夏尔·吐尔洪. 基于VSG技术的风-光-储系统自适应调频控制策略研究[J]. 高压电器2023, 59(7): 12-19.
ZHENG Yunping, YASHAR Turhong. Research on adaptive frequency modulation control strategy of wind-PV-storage system based on VSG technology[J]. High Voltage Apparatus, 2023, 59(7): 12-19.

PDF(4891 KB)

Accesses

Citation

Detail

段落导航
相关文章

/