PDF(2251 KB)
PDF(2251 KB)
PDF(2251 KB)
基于多梯度供储协同调控策略的多能源系统联合优化调度
Joint Optimization Scheduling of Multi-Energy Systems Based on Multi-Gradient Supply-Storage Coordinated Control Strategy
随着可再生能源的快速发展,小水电站作为一种清洁能源,展现出良好的发展前景。然而,目前小水电站面临着规模较小、参与电网调度机制不足以及调峰调频运行模式亟待创新等问题。基于小水电站的运行特点,考虑火电机组的成本与排放,以及小水电站的稳定运行,构建了多级梯度变速控水稳定调节的小水电站模型。同时,提出了改进的雾凇优化算法及多梯度供-储协同调度策略,以探讨实现系统经济效益、环境效益和调度稳定性综合最优决策方案。实验结果表明,与粒子群优化(particle swarm optimization, PSO)算法、灰狼优化(grey wolf optimizer, GWO)算法及冠豪猪(crested porcupine optimizer, CPO)算法相比,改进后的雾凇优化算法在提高系统经济性方面约提升8.7%,减少污染排放约20.6%,并增强小水电站运行稳定性约32.6%。研究结果验证了所提出模型和算法的有效性,为多源能互补系统协调运行优化提供了新的思路。
With the rapid development of renewable energy, small hydropower station, as a kind of clean energy, shows a good development prospect. However, at present, small hydropower stations are faced with problems such as small scale, insufficient mechanism of participating in power grid dispatching and urgent innovation of operation mode of peak and frequency regulation. Based on the operation characteristics of small hydropower station, considering the cost and emission of thermal power units and the stable operation of small hydropower station, a small hydropower station model with multi-level gradient variable speed water control and stability regulation is constructed. At the same time, an improved growth rime algorithm and multi-gradient supply-storage cooperative scheduling strategy are proposed to explore the optimal decision scheme to realize the economic benefit, environmental benefit and scheduling stability of the system. The experimental results show that compared with other algorithms such as particle swarm optimization (PSO), grey wolf optimizer (GWO) and crested porcupine optimizer (CPO), The improved rime optimization algorithm can improve the economy of the system by 8.7%, reduce the pollution emission by 20.6%, and enhance the operation stability of the small hydropower station by 32.6%. The results validate the effectiveness of the proposed model and algorithm, and provide a new idea for the coordinated operation optimization of multi-source energy complementary systems.
可再生能源 / 小水电站模型 / 多梯度控制 / 协同调度策略 / 雾凇优化算法
renewable energy / small hydropower station model / multi-gradient control / coordinated scheduling strategy / growth rime algorithm
| [1] |
陈启鑫,刘学,房曦晨,等. 考虑可再生能源保障性消纳的电力市场出清机制[J]. 电力系统自动化,2021, 45(6): 26-33.
|
| [2] |
程春田. 碳中和下的水电角色重塑及其关键问题[J]. 电力系统自动化,2021, 45(16): 29-36.
|
| [3] |
刘欣雨,罗彬,陈永灿,等. 融合改造的梯级混合式抽蓄短期调峰优化模型[J/OL]. 电网技术,1-13 [2024-05-03].
|
| [4] |
魏泓屹,卓振宇,张宁,等. 中国电力系统碳达峰·碳中和转型路径优化与影响因素分析[J]. 电力系统自动化,2022, 46(19): 1-12.
|
| [5] |
甘伟,艾小猛,方家琨,等. 风-火-水-储-气联合优化调度策略[J]. 电工技术学报,2017, 32(): 11-20.
S1
S1
|
| [6] |
郭怿,明波,黄强,等. 考虑输电功率平稳性的水-风-光-储多能互补日前鲁棒优化调度[J]. 电工技术学报,2023, 38(9): 2350-2363.
|
| [7] |
|
| [8] |
|
| [9] |
倪二男,管晓宏,李人厚. 梯级水电系统组合优化调度方法研究[J]. 中国电机工程学报,1999, 19(1): 19-23.
|
| [10] |
随权,李雪松,魏繁荣,等. 一种电网友好型智慧小区水电联供系统优化调度[J]. 中国电机工程学报,2020, 40(11): 3429-3441.
|
| [11] |
李咸善,杨拯,李飞,等. 基于梯级水电调节的风光水联盟与区域电网联合运行优化调度策略[J]. 中国电机工程学报,2023, 43(6): 2234-2248.
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
谢敏,何知纯,刘明波,等. 大规模梯级水火电机组多目标检修优化的改进向量序优化算法[J]. 广东电力,2023, 36(4): 82-95.
|
| [17] |
段云辉. 小型梯级水电站优化调度运行研究[D]. 郑州:郑州大学,2014.
|
| [18] |
|
| [19] |
李存斌,常昊,冯霞,等. 智能电网下风力-火电联合发电在微电网系统中的扩展规划[J]. 电力自动化设备,2014, 34(3): 47-51.
|
| [20] |
李煜. 基于多目标遗传算法的火电机组负荷优化分配方法[J]. 电气时代,2024(1): 64-66.
|
| [21] |
相天麟. 热电联合虚拟电厂动态建模与优化调度[D]. 北京:华北电力大学,2022.
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
/
| 〈 |
|
〉 |