基于博弈交易的风光储车蓄协同优化模型

周祥峰,吴杰康,周旭展,蔡春元,李永健

分布式能源 ›› 2024, Vol. 9 ›› Issue (6) : 30-37.

PDF(1399 KB)
PDF(1399 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (6) : 30-37. DOI: 10.16513/j.2096-2185.DE.2409604
学术研究

基于博弈交易的风光储车蓄协同优化模型

作者信息 +

Collaborative Optimization Model of Wind-Photovoltaic-Storage-EV-PSP Based on Game Trading

Author information +
文章历史 +

摘要

针对电力物联网下多能源协同优化问题,建立了风光蓄协同交易的优化模型。利用抽水蓄能(pumped storage power, PSP)电厂出色的调节性能,将其按比例与风电厂和光伏电厂进行打捆,以最大化消纳新能源;另一部分参与主体侧市场调节以实现协同优化。通过构建风光蓄联盟,旨在消除风光新能源出力偏差,从而解决物联网中的信息交流安全问题。此外,采用沙普利值法对剩余价值进行分配。在此过程中,还考虑到碳排放要求,在负荷侧引入电动汽车(electric vehicle, EV)的减碳效能,并将其与火电出力形成约束;同时,在电网侧加入电储能调节,以确保在电力物联网环境下系统的安全运行。本研究采用主体侧报量报价方式,使得新能源预测全部出清,而负荷侧则跟随市场价格波动进行清算。进一步考虑波动偏差,对多能源主体的出力进行了优化。通过多个不同情景下的仿真结果验证了所提优化模型的可行性和适应性。

Abstract

Aiming at the problem of multi-energy collaborative optimization under the power internet of things, an optimization model of collaborative trading of wind and solar storage was established. The excellent regulation performance of pumped storage power (PSP) plant is used to bundle it with wind power plant and photovoltaic power plant in proportion to maximize the absorption of new energy; The other part participates in the main side market regulation to achieve collaborative optimization. Through the construction of landscape storage alliance, it aims to eliminate the deviation of landscape new energy output, so as to solve the security problem of information exchange in the internet of things. In addition, the Shapley value method is used to allocate the surplus value. In this process, considering the carbon emission requirements, the carbon reduction efficiency of electric vehicles(EV) is introduced on the load side, and it is constrained by the output of thermal power. At the same time, the electric energy storage regulation is added to the grid side to ensure the safe operation of the system in the power internet of things environment. This study adopts the volume quotation method on the subject side, so that all the new energy forecasts are cleared, while the load side is cleared following the market price fluctuations. Further considering the fluctuation deviation, the output of the multi-energy subject is optimized. Simulation results under different scenarios verify the feasibility and adaptability of the proposed optimization model.

关键词

新能源 / 储能 / 抽水蓄能(PSP) / 电动汽车(EV) / 碳排放 / 协同优化

Key words

new energy / energy storage / pumped storage power (PSP) / electric vehicle (EV) / carbon emissions / cooperative optimization

引用本文

导出引用
周祥峰, 吴杰康, 周旭展, . 基于博弈交易的风光储车蓄协同优化模型[J]. 分布式能源. 2024, 9(6): 30-37 https://doi.org/10.16513/j.2096-2185.DE.2409604
Xiangfeng ZHOU, Jiekang WU, Xuzhan ZHOU, et al. Collaborative Optimization Model of Wind-Photovoltaic-Storage-EV-PSP Based on Game Trading[J]. Distributed Energy Resources. 2024, 9(6): 30-37 https://doi.org/10.16513/j.2096-2185.DE.2409604
中图分类号: TK02; TM7   

参考文献

[1]
王睿佳 中国电力报. 发展面向新型能源体系的电力物联网[N]. 中国电力报,2023-03-20(3).
[2]
傅质馨,李潇逸,袁越. 泛在电力物联网关键技术探讨[J]. 电力建设2019, 40(5): 1-12.
FU Zhixin, LI Xiaoyi, YUAN Yue. Research on key technologies of ubiquitous power internet of things[J]. Electric Power Construction, 2019, 40(5): 1-12.
[3]
李钦豪,张勇军,陈佳琦,等. 泛在电力物联网发展形态与挑战[J]. 电力系统自动化2020, 44(1): 13-22.
LI Qinhao, ZHANG Yongjun, CHEN Jiaqi, et al. Development patterns and challenges of ubiquitous power internet of things[J]. Automation of Electric Power Systems, 2020, 44(1): 13-22.
[4]
张亚健,杨挺,孟广雨. 泛在电力物联网在智能配电系统应用综述及展望[J]. 电力建设2019, 40(6): 1-12.
ZHANG Yajian, YANG Ting, MENG Guangyu. Review and prospect of ubiquitous power Internet of Things in smart distribution system[J]. Electric Power Construction, 2019, 40(6): 1-12.
[5]
张刘冬,殷明慧,卜京,等. 基于成本效益分析的风电?抽水蓄能联合运行优化调度模型[J]. 电网技术2015, 39(12): 3386-3392.
ZHANG Liudong, YIN Minghui, BU Jing, et al. A joint optimal operation model of wind farms and pumped storage units based on cost-benefit analysis[J]. Power System Technology, 2015, 39(12): 3386-3392.
[6]
梁子鹏,陈皓勇,雷佳,等. 考虑风电不确定度的风-火-水-气-核-抽水蓄能多源协同旋转备用优化[J]. 电网技术2018, 42(7): 2111-2119, 2121-2123.
LIANG Zipeng, CHEN Haoyong, LEI Jia, et al. A multi-source coordinated spinning reserve model considering wind power uncertainty[J]. Power System Technology, 2018, 42(7): 2111-2119, 2121-2123.
[7]
王丹,黄德裕,胡庆娥,等. 基于电-热联合市场出清的综合需求响应建模及策略[J]. 电力系统自动化2020, 44(12): 13-21.
WANG Dan, HUANG Deyu, HU Qing'e, et al. Modeling and strategy of integrated demand response based on joint electricity-heat clearing market[J]. Automation of Electric Power Systems, 2020, 44(12): 13-21.
[8]
陆舆. 含电动汽车的电力系统低碳调度[D]. 南京:东南大学,2019.
LU Yu. Low-carbon dispatching of power system with electric vehicles[D]. Nanjing: Southeast University, 2019.
[9]
马静,沈玉明,荣秀婷,等. 考虑储能用户与新能源双边交易调峰服务的电力系统联合运营模式[J]. 电力自动化设备2023, 43(1): 113-120.
MA Jing, SHEN Yuming, RONG Xiuting, et al. Joint operation mode of power system considering bilateral peak regulation service transaction between energy storage users and new energy[J]. Electric Power Automation Equipment, 2023, 43(1): 113-120.
[10]
梅生伟,李瑞,黄少伟,等. 多能互补网络建模及动态演化机理初探[J]. 全球能源互联网2018, 1(1): 10-22.
MEI Shengwei, LI Rui, HUANG Shaowei, et al. Preliminary investigation on the modeling and evolutionary analytics of multi-carrier energy systems[J]. Journal of Global Energy Interconnection, 2018, 1(1): 10-22.
[11]
肖云鹏,王锡凡,王秀丽,等. 多能源市场耦合交易研究综述及展望[J]. 全球能源互联网2020, 3(5): 487-496.
XIAO Yunpeng, WANG Xifan, WANG Xiuli, et al. Review and prospects of coupled transactions in multi-carrier energy systems[J]. Journal of Global Energy Interconnection, 2020, 3(5): 487-496.
[12]
王怡. 基于多主体博弈的综合能源市场交易决策研究[D]. 北京:北京交通大学,2022.
WANG Yu. Research on integrated energy market trading decisions based on multi-entity game[D]. Beijing: Beijing Jiaotong University, 2022.
[13]
彭春华,张海洋,孙惠娟,等. 碳交易机制下综合能源市场多供能主体均衡竞价策略[J]. 电网技术2022, 46(2): 463-471.
PENG Chunhua, ZHANG Haiyang, SUN Huijuan, et al. Balanced bidding strategy for multiple energy suppliers in the integrated energy market under carbon trading mechanism[J]. Power System Technology, 2022, 46(2): 463-471.
[14]
王晛,黄蒙涛,张少华. 考虑风电投标偏差惩罚的电力市场均衡分析[J]. 电网技术2016, 40(2): 602-607.
WANG Xian, HUANG Mengtao, ZHANG Shaohua. Equilibrium analysis of electricity market considering penalties for wind power's bidding deviation[J]. Power System Technology, 2016, 40(2): 602-607.
[15]
高伟,谢丽蓉,卢浩鹏,等. 考虑预测误差分析的混合储能补偿优化策略[J]. 太阳能学报2023, 44(2): 254-259.
GAO Wei, XIE Lirong, LU Haopeng, et al. Optimization strategies for hybrid energy storage compensation considering prediction error analysis[J]. Acta Energiae Solaris Sinica, 2023, 44(2): 254-259.
[16]
邵浩然,董超,舒征宇,等. 含光伏机组参与竞标的日前市场价值公平分配机制的研究[J]. 可再生能源2023, 41(5): 667-675.
SHAO Haoran, DONG Chao, SHU Zhengyu, et al. Research on fair distribution mechanism of day ahead market value including photo-voltaic units participating in bidding[J]. Renewable Energy Resources, 2023, 41(5): 667-675.
[17]
赵栩,刘继春,张帅. 市场环境下光伏抽蓄联合电站的优化运行与收益分配策略[J]. 水电能源科学2021, 39(8): 208-212.
ZHAO Xu, LIU Jichun, ZHANG Shuai. Optimal operation and profit distribution strategy of photovoltaic pumped storage complementary plant under market condition[J]. Water Resources and Power, 2021, 39(8): 208-212.
[18]
李宏仲,魏静怡,吕勇荡. 考虑储能与新能源双边交易的日前市场报价策略[J]. 电网技术2022, 46(12): 4843-4853.
LI Hongzhong, WEI Jingyi, Yongdang. Day-ahead market quotation strategy considering bilateral transaction between energy storage and new energy[J]. Power System Technology, 2022, 46(12): 4843-4853.
[19]
刘萌. 基于博弈论的电网侧储能参与现货联合市场竞价策略研究[D]. 郑州:郑州大学,2021.
LIU Meng. Research on bidding strategy of grid-side energy storage participating in spot joint market based on game theory[D]. Zhengzhou: Zhengzhou University, 2021.
[20]
潘郑楠,梁宁,徐慧慧,等. 基于纳什谈判理论的风电-虚拟氢厂参与现货市场合作运行策略[J]. 电力自动化设备2023, 43(5): 129-137.
PAN Zhengnan, LIANG Ning, XU Huihui, et al. Cooperative operation strategy of wind power-virtual hydrogen plant participating in spot market based on Nash bargaining theory[J]. Electric Power Automation Equipment, 2023, 43(5): 129-137.
[21]
邓盛盛,陈皓勇,肖东亮,等. 考虑碳市场交易的寡头电力市场均衡分析[J]. 南方电网技术2024, 18(1): 143-152.
DENG Shengsheng, CHEN Haoyong, XIAO Dongliang, et al. Equilibrium analysis of oligopoly electricity market considering carbon market trading[J]. Southern Power System Technology, 2024, 18(1): 143-152.
[22]
田海青,郭金辉,周瑜,等. 基于合作博弈模型的新能源参与电力交易的调控策略[J]. 现代电力2022, 39(6): 640-648.
TIAN Haiqing, GUO Jinhui, ZHOU Yu, et al. Regulation strategy of new energy participated in electricity trading based on cooperative game model[J]. Modern Electric Power, 2022, 39(6): 640-648.
[23]
何永秀,宋栋,夏天,等. 基于合作博弈论的常规能源与新能源发电权置换交易模式研究[J]. 电网技术2017, 41(8): 2485-2490.
HE Yongxiu, SONG Dong, XIA Tian, et al. Mode of generation right trade between renewable energy and conventional energy based on cooperative game theory[J]. Power System Technology, 2017, 41(8): 2485-2490.

基金

广东省基础与应用基础研究基金区域联合基金项目——粤港澳研究团队项目(2020B1515130001)
中国南方电网公司科技项目(032000KK52210111)

PDF(1399 KB)

Accesses

Citation

Detail

段落导航
相关文章

/