PDF(2889 KB)
基于可变流量控制的压缩空气储能安全控制策略
李超, 陈来军, 李建华, 梅生伟, 赵方亮, 崔森, 史云乾, 郭俊波
分布式能源 ›› 2024, Vol. 9 ›› Issue (6) : 38-46.
PDF(2889 KB)
PDF(2889 KB)
基于可变流量控制的压缩空气储能安全控制策略
Safety Control Strategy of Compressed Air Energy Storage Based on Variable Flow Control
先进绝热压缩空气储能(advanced adiabatic compressed air energy storage,AA-CAES)能够提高新能源消纳率,是新型电力系统的关键技术。由于AA-CAES系统的压缩机采用离心式压缩机,在运行过程中存在喘振与阻塞现象,严重影响系统的安全运行。为此,该文研究AA-CAES系统压缩侧安全控制策略。首先,提出基于压缩机质量流率斜率的喘振和阻塞现象的简易判断方法,确定压缩机在给定转速下允许流过的空气质量流率的范围;然后,设计压缩子系统的防喘振和阻塞控制策略,利用可变流量法通过控制压缩机的进口导叶角度来限制压缩机空气质量流率的范围;最后,分别在启停工况和并网运行工况下进行仿真,验证了该控制策略的有效性。
Advanced adiabatic compressed air energy storage (AA-CAES) can improve the rate of new energy consumption, and it is a key technology for new power systems. Since the compressor of the AA-CAES system adopts a centrifugal compressor, there is a phenomenon of surge and blockage during the operation, which seriously affects the safe operation of the system. In this paper, the safety control strategy of the compression side of the AA-CAES system is investigated. Firstly, a simple judgement method of the surge and blockage phenomena based on the slope of the compressor mass flow rate is proposed, and the range of the compressor's allowable mass flow rate of air flowing through the compressor at a given rotational speed is determined. Then, the anti-surge and blockage control strategy of the compression subsystem is designed to limit the range of compressor air mass flow rate by controlling the angle of the inlet guide vane of the compressor using the variable flow method. Finally, simulations are carried out under the start-stop condition and grid-connected operation condition to verify the effectiveness of the control strategy.
先进绝热压缩空气储能(AA-CAES) / 可变流量控制 / 喘振 / 阻塞
advanced adiabatic compressed air energy storage (AA-CAES) / variable flow control / surge / blockage
| [1] |
肖先勇,郑子萱. “双碳”目标下新能源为主体的新型电力系统:贡献、关键技术与挑战[J]. 工程科学与技术,2022, 54(1): 47-59.
|
| [2] |
舒印彪,张智刚,郭剑波,等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报,2017, 37(1): 1-9.
|
| [3] |
杨经纬,张宁,王毅,等. 面向可再生能源消纳的多能源系统:述评与展望[J]. 电力系统自动化,2018, 42(4): 11-24.
|
| [4] |
赵冬梅,夏轩,陶然. 含电转气的热电联产微网电/热综合储能优化配置[J]. 电力系统自动化,2019, 43(17): 46-54.
|
| [5] |
梅生伟,李建林,朱建全,等. 储能技术[M]. 北京:机械工业出版社,2022: 72-73.
|
| [6] |
花严红,袁卫星,王海. 离心压缩机研究现状及展望[J]. 风机技术,2007, 49(3): 59-62, 65.
|
| [7] |
魏龙,袁强. 离心式压缩机的喘振及控制[J]. 风机技术,2004, 46(1): 43-47.
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
蒲斌,李星星,杨福超,等. 变频器低电压穿越引起的压缩机喘振及改进措施[J]. 油气储运,2024, 43(4): 439-448.
|
| [15] |
蒋安荔,甘捷,朱治鹏,等. 离心式压缩机防喘振控制系统的研究与稳定性分析[J]. 压缩机技术,2023(3): 32-35.
|
| [16] |
吴庆龙,杨赫,赵栢杨,等. 离心式压缩机防喘振自动控制技术研究[J]. 石油和化工设备,2023, 26(9): 19-21.
|
| [17] |
刘佰达. 高速磁悬浮离心式压缩机及其控制方法[J]. 压缩机技术,2023(4): 48-53.
|
| [18] |
付嘉宁,周家怡. 一种石油化工离心压缩机防喘振控制技术[J]. 中国科技信息,2023(20): 107-109.
|
| [19] |
魏龙,常新忠,滕文锐. 离心压缩机喘振分析及实例[J]. 通用机械,2003(7): 38-41.
|
| [20] |
杨泽军,朱海山,雷亚飞,等. 离心压缩机启机动态仿真与流程优化[J]. 中国海上油气,2018, 30(2): 167-172.
|
| [21] |
|
/
| 〈 |
|
〉 |