面向高比例光伏接入的农村电网储能电站优化配置方法

刘苑红,张伟,于辉,孙丽敬,林志法

分布式能源 ›› 2024, Vol. 9 ›› Issue (6) : 47-55.

PDF(1846 KB)
PDF(1846 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (6) : 47-55. DOI: 10.16513/j.2096-2185.DE.2409606
学术研究

面向高比例光伏接入的农村电网储能电站优化配置方法

作者信息 +

Optimal Configuration Method of Energy Storage Power Station in Rural Power Grid for High Proportion of Photovoltaic Access

Author information +
文章历史 +

摘要

随着电动汽车保有量与普及率的逐年提升,农村地区现有充电设施布局不均衡、数量不充足,已成为制约农村地区新能源汽车发展的主要原因。基于主从博弈定价策略,建立了面向高比例光伏渗透农村电网的充储电站优化配置模型。首先,基于主从博弈理论建立面向高比例光伏渗透农村电网的充储电站优化配置模型:上层领导者为充储电站投资方,综合考虑农村配电网与充储电站建设运行条件,优化决策充储电站建设位置、配套储能设备容量及电价策略;下层跟随者为电动汽车车主,根据上层领导者模型制定的电价策略,优化决策电动汽车充电策略。其次,利用Karush Kuhn Tucker (KKT)条件与对偶原理实现模型转换,获得易于求解的混合整数线性规划模型。最后,利用包含2个充电区域的IEEE 33节点典型算例进行算法验证。算例分析表明所提模型能够协调充储电站投资方与电动汽车车主的利益,获得经济效益好、光伏消纳能力强的充储电站配置运行策略。

Abstract

With the increase in the number and penetration rate of electric vehicles year by year, the uneven layout and insufficient number of existing charging facilities in rural areas have become the main reason restricting the development of new energy vehicles in rural areas. Based on the master-slave game pricing strategy, this paper establishes a charging and storage plant optimisation model for rural power grids with a high percentage of photovoltaic penetration. First of all, based on the master-slave game theory to establish the charging and storage power station optimization model for the high proportion of PV penetration of rural power grid: the upper leader is the charging and storage power station investor, taking into account the construction and operation conditions of the rural distribution network and charging and storage power station, to optimize the decision-making charging and storage power station construction location, the supporting capacity of the storage equipment and the tariff strategy; the lower follower is the electric vehicle owner, according to the tariff strategy formulated in the upper leader model, to optimize the decision-making charging strategy for the electric vehicle. The lower level followers are EV owners, who make optimal decisions on EV charging strategies based on the tariff strategies developed by the upper level leader model. Secondly, the Karush Kuhn Tucker (KKT) condition and the dyadic principle are used to transform the model to obtain an easy-to-solve mixed-integer linear programming model. Finally, the algorithm is validated using a typical IEEE 33-node arithmetic system containing two charging regions. The example analysis shows that the proposed model can coordinate the interests of charging and storage plant investors and EV owners, and obtain a charging and storage plant configuration and operation policy with good economic benefits and strong PV consumption capacity.

关键词

农村配电网 / 高比例光伏 / 主从博弈 / 充储电站 / 优化配置

Key words

rural distribution network / high proportion of photovoltaics / master-slave game / charging and storage power stations / configuration optimization

引用本文

导出引用
刘苑红, 张伟, 于辉, . 面向高比例光伏接入的农村电网储能电站优化配置方法[J]. 分布式能源. 2024, 9(6): 47-55 https://doi.org/10.16513/j.2096-2185.DE.2409606
Yuanhong LIU, Wei ZHANG, Hui YU, et al. Optimal Configuration Method of Energy Storage Power Station in Rural Power Grid for High Proportion of Photovoltaic Access[J]. Distributed Energy Resources. 2024, 9(6): 47-55 https://doi.org/10.16513/j.2096-2185.DE.2409606
中图分类号: TK02   

参考文献

[1]
中华人民共和国国务院. 中共中央国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见[EB]. 中华人民共和国国务院公报. [2024-02-03].
[2]
甄文媛. 新政加码:充电桩如何当好下乡“先行官”[J]. 汽车纵横2023(6): 16-19.
ZHEN Wenyuan. New deal plus code: How to be a “pioneer” of charging piles in the countryside[J]. Auto Review, 2023(6): 16-19.
[3]
加大宏观政策调节力度 统筹推动经济运行持续向好:国家发展改革委5月新闻发布会实录[J]. 价格理论与实践2023(5): 5-9.
[4]
韩妍,丁惜瀛,程锟,等. 考虑用户参与度的电动汽车集群优化调度策略[J]. 控制与信息技术2021(6): 51-56.
HAN Yan, DING Xiying, CHENG Kun, et al. A cluster-based optimal scheduling strategy for electric vehicles considering user participation[J]. Control and Information Technology, 2021(6): 51-56.
[5]
张卫国,陈良亮,成海生,等. 基于电动汽车供电资源态势感知的台区负荷弹性调度策略[J]. 电力建设2020, 41(8): 48-56.
ZHANG Weiguo, CHEN Liangliang, CHENG Haisheng, et al. Elastic load scheduling based on awareness of electric vehicle power supply resources[J]. Electric Power Construction, 2020, 41(8): 48-56.
[6]
夏时哲,王傲群,蔡梦路. 考虑电动汽车储能特性的充电聚合管控策略研究[J]. 电力需求侧管理2024, 26(4): 61-67.
XIA Shizhe, WANG Aoqun, CAI Menglu. Research on charging aggregation management strategies considering energy storage characteristics of electric vehicles[J]. Power Demand Side Management, 2024, 26(4): 61-67.
[7]
邹铁,沈庆,邵宏,等. 考虑负荷可调度特性的农村配电系统光-储-充规划展望[J]. 农村电气化2023(8): 1-5.
ZOU Tie, SHEN Qing, SHAO Hong, et al. Overview of photovoltaic-storage-charging planning for rural distribution system considering load dispatchability characteristics[J]. Rural Electrification, 2023(8): 1-5.
[8]
陈亭轩,徐潇源,严正,等. 基于深度强化学习的光储充电站储能系统优化运行[J]. 电力自动化设备2021, 41(10): 90-98.
CHEN Tingxuan, XU Xiaoyuan, YAN Zheng, et al. Optimal operation based on deep reinforcement learning for energy storage system in photovoltaic-storage charging station[J]. Electric Power Automation Equipment, 2021, 41(10): 90-98.
[9]
何晨可,朱继忠,刘云,等. 计及碳减排的电动汽车充换储一体站与主动配电网协调规划[J]. 电工技术学报2022, 37(1): 92-111.
HE Chenke, ZHU Jizhong, LIU Yun, et al. Coordinated planning of electric vehicle charging-swapping-storage integrated station and active distribution network considering carbon reduction[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 92-111.
[10]
闫庆友,于鹏朔,张美娟,等. 考虑光伏不确定性和碳交易的光储充电站博弈运行优化[J/OL]. 现代电力,1-18[2024-07-28].
YAN Qingyou, YU Pengshuo, ZHANG Meijuan, et al. Game-based operation optimization for photovoltaic storage charging station considering photovoltaic uncertainty and carbon trading[J/OL]. Modern Electric Power, 1-18[2024-07-28].
[11]
邱燕超. “整县推进”赋能分布式光伏新发展[N]. 中国电力报,2022-02-09(002).
[12]
王雯沁,高红均,王仁浚,等. 考虑分布式电源支撑与农业设施协调的配电网分布鲁棒优化[J]. 电力系统自动化2023, 47(21): 89-98.
WANG Wenqin, GAO Hongjun, WANG Renjun, et al. Distributionally robust optimization of distribution network considering distributed generator support and agricultural facility coordination[J]. Automation of Electric Power Systems, 2023, 47(21): 89-98.
[13]
徐彪,徐宇新,欧阳帆,等. 城市配电网中性点接地方式适应性评价研究[J]. 电瓷避雷器2024(2): 114-119, 127.
XU Biao, XU Yuxin, OUYANG Fan, et al. Adaptability study of neutral point grounding mode in urban distribution network[J]. Insulators and Surge Arresters, 2024(2): 114-119, 127.
[14]
闫娜,严欢,贾宏刚,等. 面向新能源高占比地区的混合储能优化配置及运行策略[J]. 电网与清洁能源2024, 40(7): 18-27.
YAN Na, YAN Huan, JIA Honggang, et al. Optimization configuration and operation strategy of hybrid energy storage for areas with a high proportion of new energy[J]. Power System and Clean Energy, 2024, 40(7): 18-27.
[15]
陈维江,靳晓凌,吴鸣,等. 双碳目标下我国配电网形态快速演进的思考[J]. 中国电机工程学报2024, 44(17): 6811-6818.
CHEN Weijiang, JIN Xiaoling, WU Ming, et al. Thinking on the rapid evolution of distribution network form under the carbon peaking and carbon neutrality goals[J]. Proceedings of the CSEE, 2024, 44(17): 6811-6818.
[16]
谢雨龙,罗逸飏,李智威,等. 考虑微网新能源经济消纳的共享储能优化配置[J]. 高电压技术2022, 48(11): 4403-4413.
XIE Yulong, LUO Yiyang, LI Zhiwei, et al. Optimal allocation of shared energy storage considering the economic consumption of microgrid new energy[J]. High Voltage Engineering, 2022, 48(11): 4403-4413.
[17]
王品. 中国新能源汽车发展现状及对策建议[J]. 汽车实用技术2024, 49(8): 187-191.
WANG Pin. China's new energy vehicle development status and countermeasures suggestions[J]. Automobile Applied Technology, 2024, 49(8): 187-191.
[18]
魏韡,陈玥,刘锋,等. 基于主从博弈的智能小区代理商定价策略及电动汽车充电管理[J]. 电网技术2015, 39(4): 939-945.
WEI Wei, CHEN Yue, LIU Feng, et al. Stackelberg game based retailer pricing scheme and EV charging management in smart residential area[J]. Power System Technology, 2015, 39(4): 939-945.
[19]
庞松岭,赵雨楠,毕克凡,等. 电动汽车聚合商参与需求响应定价策略及收益分配研究[J]. 电工电能新技术2024, 43(7): 41-50.
PANG Songling, ZHAO Yunan, BI Kefan, et al. Research on pricing strategies and income distribution of electric vehicle aggregators participating in demand response[J]. Advanced Technology of Electrical Engineering and Energy, 2024, 43(7): 41-50.
[20]
高建伟,梁鹏程,高芳杰,等. 基于多方势博弈的综合能源系统运行优化[J]. 电力建设2021, 42(9): 32-40.
GAO Jianwei, LIANG Pengcheng, GAO Fangjie, et al. Operation optimization of integrated energy system considering multi-potential game[J]. Electric Power Construction, 2021, 42(9): 32-40.
[21]
BARAN M E, WU F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Transactions on Power Delivery, 1989, 4(2): 1401-1407.
[22]
李捷,余涛,潘振宁. 基于强化学习的增量配电网实时随机调度方法[J]. 电网技术2020, 44(9): 3321-3332.
LI Jie, YU Tao, PAN Zhenning. Real-time stochastic dispatch method for incremental distribution network based on reinforcement learning[J]. Power System Technology, 2020, 44(9): 3321-3332.
[23]
刘宇明,仰文林,赵选宗,等. 基于主从博弈理论的综合能源系统优化运行方法[J]. 可再生能源2021, 39(1): 123-129.
LIU Yuming, YANG Wenlin, ZHAO Xuanzong, et al. Optimal operation method of comprehensive energy system based on master-slave game theory[J]. Renewable Energy Resources, 2021, 39(1): 123-129.
[24]
王成山,吕超贤,李鹏,等. 园区型综合能源系统多时间尺度模型预测优化调度[J]. 中国电机工程学报2019, 39(23): 6791-6803, 7093.
WANG Chengshan, Chaoxian, LI Peng, et al. Multiple time-scale optimal scheduling of community integrated energy system based on model predictive control[J]. Proceedings of the CSEE, 2019, 39(23): 6791-6803, 7093.
[25]
王伟杰,黄海宇,徐远途,等. 电动汽车参与主动配电网电压调控的策略研究[J]. 广东电力2023, 36(10): 93-104.
WANG Weijie, HUANG Haiyu, XU Yuantu, et al. Strategy research on electric vehicles participating in active distribution network voltage regulation[J]. Guangdong Electric Power, 2023, 36(10): 93-104.

基金

国家电网公司科技项目(5400-202355766A-3-5-YS)

PDF(1846 KB)

Accesses

Citation

Detail

段落导航
相关文章

/