多场景下提高并网收益的光储充电站容量配置方法

李智诚,陈大玮,张伟骏

分布式能源 ›› 2024, Vol. 9 ›› Issue (6) : 82-90.

PDF(1447 KB)
PDF(1447 KB)
分布式能源 ›› 2024, Vol. 9 ›› Issue (6) : 82-90. DOI: 10.16513/j.2096-2185.DE.2409610
学术研究

多场景下提高并网收益的光储充电站容量配置方法

作者信息 +

Capacity Configuration Method of Photovoltaic-Storage Charging Stations to Improve Grid-Connected Benefits in Multiple Scenarios

Author information +
文章历史 +

摘要

对于光储充电站而言,光伏、储能及充电站的优化配置是影响充电站经济性的重要因素。首先,对一天内充电站的电动汽车充电情况进行模拟,得到充电站单日充电曲线;然后,根据某地光伏出力的特性并结合分时电价,综合考虑投资方和用户侧因素,提出以总社会成本最小为目标函数,装置利用率、排队时间等为约束条件的光储充电站容量优化配置模型,并采用量子粒子群算法进行求解,对充电站加设的光伏和储能容量进行配置,基于排队理论得到系统的各个运行指标;最后,从各项成本随容量变化的趋势等多个角度验证配置结果的合理性。计算和算例分析表明,所提出的方法能实现光伏、储能及充电桩容量的合理配置,从而有效减少充电站在峰时段从电网的购电量,提高充电站运行的经济性。

Abstract

For photovoltaic-storage charging stations, the optimal configuration of photovoltaic (PV) systems, energy storage, and charging facilities is a crucial factor affecting the economic viability of the charging stations. First, a simulation of the electric vehicle charging situation at the stations over a day is conducted to obtain the daily charging curve. Then, based on the characteristics of PV output and considering time-of-use electricity pricing, considering both investor and user-side factors, a optimal configuration model for photovoltaic-storage charging stations is proposed. This model aims to minimize total social costs while constraining device utilization rates and queuing times. The quantum particle swarm algorithm is employed to solve this model, determining the configuration of additional PV and energy storage capacity for the charging stations and deriving various operational indicators based on queuing theory. Finally, the rationality of the configuration results is validated from multiple perspectives, including trends in costs as capacity change. Calculations and case analyses show that the proposed method can achieve a reasonable allocation of PV, energy storage, and charging facility capacity, thereby effectively reducing the amount of electricity purchased from the grid during peak periods and improving the economic efficiency of the charging stations.

关键词

充电站 / 光储 / 排队论 / 分时电价 / 优化配置

Key words

charging stations / photovoltaic-storage / queuing theory / time-of-use price / optimize configuration

引用本文

导出引用
李智诚, 陈大玮, 张伟骏. 多场景下提高并网收益的光储充电站容量配置方法[J]. 分布式能源. 2024, 9(6): 82-90 https://doi.org/10.16513/j.2096-2185.DE.2409610
Zhicheng LI, Dawei CHEN, Weijun ZHANG. Capacity Configuration Method of Photovoltaic-Storage Charging Stations to Improve Grid-Connected Benefits in Multiple Scenarios[J]. Distributed Energy Resources. 2024, 9(6): 82-90 https://doi.org/10.16513/j.2096-2185.DE.2409610
中图分类号: TK02; TM71   

参考文献

[1]
张帝,姜久春,张维戈,等. 电动出租车充电桩优化配置[J]. 电工技术学报2015, 30(18): 181-188.
ZHANG Di, JIANG Jiuchun, ZHANG Weige, et al. Optimal configuration of charging spots for electric taxis[J]. Transactions of China Electrotechnical Society, 2015, 30(18): 181-188.
[2]
孟旭瑶,张维戈,鲍谚,等. 考虑充电功率的电动汽车快充站充电桩优化配置[J]. 电力自动化设备2018, 38(7): 28-34.
MENG Xuyao, ZHANG weige, BAO Yan, et al. Optimized configuration of charging facilities for electric vehicle fast charging station considering charging power[J]. Electric Power Automation Equipment, 2018, 38(7): 28-34.
[3]
邓慧琼,张晓飞,曾凡淦,等. 动态分时电价机制下的电动汽车充放电调度策略研究[J]. 智慧电力2023, 51(3): 59-66, 78.
DENG Huiqiong, ZHANG Xiaofei, ZENG Fangan, et al. Electric vehicle charging and discharging scheduling strategy under dynamic time-of-use electricity price mechanism[J]. Smart Power, 2023, 51(3): 59-66, 78.
[4]
陈文颖,刘蓓迪. 基于粒子群算法的电动汽车有序充放电优化[J]. 山东电力技术2023, 50(1): 52-58.
CHEN Wenying, LIU Beidi. Sequential charging and discharging optimization of electric vehicles based on particle swarm optimization[J]. Shandong Electric Power, 2023, 50(1): 52-58.
[5]
闫丽梅,都彬彬,徐建军. 基于聚类分层的规模化电动汽车协调充电策略[J]. 广东电力2022, 35(10): 65-73.
YAN Limei, DU Binbin, XU Jianjun. Coordinated charging strategy of large-scale electric vehicles based on clustering and stratification[J]. Guangdong Electric Power, 2022, 35(10): 65-73.
[6]
吴杰,温晨阳,李珊,等. 基于分时电价的光伏-储能系统容量优化配置[J]. 电工电能新技术2018, 37(1): 23-30.
WU Jie, WEN Chenyang, LI Shan, et al. Optimal allocation of PV and accumulator system based on time-of-use price[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(1): 23-30.
[7]
赵波,汪湘晋,张雪松,等. 考虑需求侧响应及不确定性的微电网双层优化配置方法[J]. 电工技术学报2018, 33(14): 3284-3295.
ZHAO Bo, WANG Xiangjin, ZHANG Xuesong, et al. Two-layer method of microgrid optimal sizing considering demand-side response and uncertainties[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3284-3295.
[8]
解治中,葛丽娟,盖曜麟. 含风光储的电动汽车充电站容量优化研究综述[J]. 山西电力2019(3): 17-22.
XIE Zhizhong, GE Lijuan, GAI Yaolin. Review on capacity ratio optimization of electric vehicle charging stations with wind-solar storage[J]. Shanxi Electric Power, 2019(3): 17-22.
[9]
BAYATLOO F, BOZORGI-AMIRI A. A novel optimization model for dynamic power grid design and expansion planning considering renewable resources[J]. Journal of Cleaner Production, 2019, 229: 1319-1334.
[10]
徐林,阮新波,张步涵,等. 风光蓄互补发电系统容量的改进优化配置方法[J]. 中国电机工程学报2012, 32(25): 88-98, 14.
XU Lin, RUAN Xinbo, ZHANG Buhan, et al. Research of capacity limit of grid-connected photovoltaic power station on the basis of chance-constrained programming[J]. Proceedings of the CSEE, 2012, 32(25): 88-98, 14.
[11]
杨丽君,杨博,安立明,等. 考虑电动汽车响应的光储微电网储能优化配置[J]. 太阳能学报2020, 41(4): 340-347.
YANG Lijun, YANG Bo, AN Liming, et al. Optimal configuration of gri-connected PV-and-storage microgrid considering EVs’ demand response[J]. Acta Energiae Solaris Sinica, 2020, 41(4): 340-347.
[12]
姜欣,郑雪媛,胡国宝,等. 市场机制下面向电网的储能系统优化配置[J]. 电工技术学报2019, 34(21): 4601-4610.
JIANG Xin, ZHENG Xueyuan, HU Guobao, et al. Integrated resources planning in microgrid based on modeling demand response[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4601-4610.
[13]
张明锐,谢青青,李路遥,等. 考虑电动汽车能量管理的微网储能容量优化[J]. 中国电机工程学报2015, 35(18): 4663-4673.
ZHANG Mingrui, XIE Qingqing, LI Luyao, et al. Optimal sizing of energy storage for microgrids considering energy management of electric vehicles[J]. Proceedings of the CSEE, 2015, 35(18): 4663-4673.
[14]
涂炼,刘涤尘,廖清芬,等. 计及储能容量优化的含风光储配电网可靠性评估[J]. 电力自动化设备2015, 35(12): 40-46.
TU Lian, LIU Dichen, LIAO Qingfen, et al. Reliability evaluation considering storage capacity optimization for disturibution system with wind-PV-storage[J]. Electric Power Automation Equipment, 2015, 35(12): 40-46.
[15]
吴万禄,吴爱军,潘伟,等. 含光储充电站的配电网供电能力评估[J]. 电力与能源2019, 40(2): 232-237.
WU Wanlu, WU Aijun, PAN Wei, et al. Capability evaluation of distribution network with PV-energy-storage charging station[J]. Power and Energy, 2019, 40(2): 232-237.
[16]
谢石骁,杨莉,李丽娜. 基于机会约束规划的混合储能优化配置方法[J]. 电网技术2012, 36(5): 79-84.
XIE Shiyao, YANG Li, LI Lina. A chance constrained programming based optimal configuration method of hybrid energy storage system[J]. Power System Technology, 2012, 36(5): 79-84.
[17]
汤杰,李欣然,黄际元,等. 以净效益最大为目标的储能电池参与二次调频的容量配置方法[J]. 电工技术学报2019, 34(5): 963-972.
TANG Jie, LI Xinran, HUANG Jiyuan, et al. Capacity allocation of BESS in secondary frequency regulation with the goal of maximum net benefit[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 963-972.
[18]
张维戈,陈连福,黄彧,等. M/G/k排队模型在电动出租汽车充电站排队系统中的应用[J]. 电网技术2015, 39(3): 724-729.
ZHANG Weige, CHEN Lianfu, HUANG Yu, et al. Application of M/G/k queuing model in queuing system of electric taxi charging station[J]. Power System Technology, 2015, 39(3): 724-729.
[19]
FAN P, SAINBAYAR B, REN S. Operation analysis of fast charging stations with energy demand control of electric vehicles[J]. IEEE Transactions on Smart Grid, 2015, 6(4): 1819-1826.
[20]
XIANG Y, LIU J, LI R, et al. Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates[J]. Applied Energy, 2016, 178: 647-659.
[21]
兰国军,栗文义,尹凯,等. 并网运行风/光/储微电网容量配置双目标优化[J]. 电工电能新技术2015, 34(3): 18-23.
LAN Guojun, LI Wenyi, YIN Kai, et al. Bi-objective optimization of capacity configuration based on grid-connected wind/photovoltaic/storage microgrid[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(3): 18-23.
[22]
李建林,牛萌,周喜超,等. 能源互联网中微能源系统储能容量规划及投资效益分析[J]. 电工技术学报2020, 35(4): 874-884.
LI Jianlin, NIU Meng, ZHOU Xichao, et al. Energy storage capacity planning and investment benefit analysis of micro-energy system in energy interconnection[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 874-884.
[23]
ERDINC O, UZUNOGLU M. Optimum design of hybrid renewable energy systems: Overview of different approaches[J]. Renewable and Sustainable Energy Reviews. 2012(16): 1412-1425.
[24]
KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995: 1942-1948.
[25]
何文华,丁贵立,韩威,等. 综合考虑电网碳效益和用户满意度的需求响应激励策略优化模型研究[J]. 供用电2023, 40(10): 95-105.
HE Wenhua, DING Guili, HAN Wei, et al. Optimization model research of demand response incentive strategy considering carbon benefits of power grid and user satisfaction[J]. Distribution & Utilization, 2023, 40(10): 95-105.
[26]
李建林,郭斌琪,牛萌,等. 风光储系统储能容量优化配置策略[J]. 电工技术学报2018, 33(6): 1189-1196.
LI Jianlin, GUO Binqi, NIU Meng, et al. Optimal configuration strategy of energy storage capacity in wind/PV/storage hybrid system[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1189-1196.

PDF(1447 KB)

Accesses

Citation

Detail

段落导航
相关文章

/