考虑多类型需求响应的多能源虚拟电厂优化调度

吴沅炟, 刘敏, 粟子聪

分布式能源 ›› 2025, Vol. 10 ›› Issue (3) : 64-74.

PDF(3214 KB)
PDF(3214 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (3) : 64-74. DOI: 10.16513/j.2096-2185.DE.25100014
虚拟电厂

考虑多类型需求响应的多能源虚拟电厂优化调度

作者信息 +

Optimal Scheduling of Multi-Energy Virtual Power Plants Considering Multi-Type Demand Response

Author information +
文章历史 +

摘要

将需求响应纳入虚拟电厂中,可以增强虚拟电厂的灵活性和经济性,但需求响应存在不确定性,给调度运行带来了困难;另外,多类型需求响应应用在虚拟电厂中的研究也较少。针对上述问题,提出考虑效益系数的激励型需求响应模型,在激励补偿的基础上增加了效益系数,降低激励型需求响应不理想情况下的激励补偿;提出考虑用户满意度的替代性需求响应模型,以反映用户满意度对替代型需求响应的影响;最后,构建多类型需求响应的多能源虚拟电厂模型,同时考虑3种需求响应,来达到更好的优化效果。算例结果表明:考虑效益系数的激励型需求响应模型能提升系统的经济性;考虑用户满意度的替代性需求响应模型能更准确地反映用户的潜在负荷变化,提高需求响应的精确度;多类型需求响应参与虚拟电厂的优化调度,整体效果最佳。

Abstract

Integrating demand response into virtual power plants can enhance their flexibility and economic efficiency,but the inherent uncertainty of demand response poses challenges for scheduling and operation. Moreover,research on applying multiple demand response types in virtual power plants remains limited. To address these issues,this paper proposes an incentive-based demand response model incorporating a benefit coefficient that adjusts incentive compensation to reduce payouts under unsatisfactory demand response performance,as well as a replaceable-based demand response model considering customer satisfaction to better reflect its influence on replaceable demand response. Finally,a multi-energy virtual power plants model integrating multiple demand response types is established,considering three demand response strategies to achieve superior optimization. Case studies demonstrate that the incentive-based demand response model considering the benefit-coefficient can improve economic efficiency of the system,and the replaceable-based demand response model considering customer satisfaction can more accurately capture potential load variations to enhance demand response precision,and the coordinated participation of multiple demand response types in virtual power plant scheduling yields optimal overall performance.

关键词

需求响应 / 不确定性 / 效益系数 / 用户满意度 / 虚拟电厂 / 优化调度

Key words

demand response / uncertainty / efficiency coefficient / customer satisfaction / virtual power plant / optimization scheduling

引用本文

导出引用
吴沅炟, 刘敏, 粟子聪. 考虑多类型需求响应的多能源虚拟电厂优化调度[J]. 分布式能源. 2025, 10(3): 64-74 https://doi.org/10.16513/j.2096-2185.DE.25100014
Yuanda WU, Min LIU, Zicong SU. Optimal Scheduling of Multi-Energy Virtual Power Plants Considering Multi-Type Demand Response[J]. Distributed Energy Resources. 2025, 10(3): 64-74 https://doi.org/10.16513/j.2096-2185.DE.25100014
中图分类号: TK01;TM73   

参考文献

[1]
SIANO P. Demand response and smart grids: A survey[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 461-478.
[2]
HUANG Wujing, ZHANG Ning, KANG Chongqing, et al. From demand response to integrated demand response: Review and prospect of research and application[J]. Protection and Control of Modern Power Systems, 2019, 4(1): 1-13.
[3]
江美慧, 许镇江, 张其朴, 等. 面向综合能源系统的综合需求响应策略及其建模技术[J]. 电力建设, 2024, 45(12):65-82.
JIANG Meihui, XU Zhenjiang, ZHANG Qipu, et al. Integrated demand response strategy and modeling technology for integrated energy systems[J]. Electric Power Construc-tion, 2024, 45(12): 65-82.
[4]
徐涛, 王樊云. 电力需求响应实施现状综述及展望[J]. 分布式能源, 2024, 9(3): 1-11.
XU Tao, WANG Fanyun. Review and prospect of power demand response implementation[J]. Distributed Energy, 2024, 9(3): 1-11.
[5]
NOSRATABADI S M, HOOSHMAND R A, GHOLIPOUR E. A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 341-363.
[6]
WEI H, WANG W S, KAO X X. A novel approach to hybrid dynamic environmental-economic dispatch of multi-energy complementary virtual power plant considering renewable energy generation uncertainty and demand response[J]. Renewable Energy, 2023, 219: 119406.
[7]
VAHEDIPOUR-DAHRAIE M, RASHIDIZADEH-KER-MANI H, SHAFIE-KHAH M, et al. Risk-averse optimal energy and reserve scheduling for virtual power plants incorporating demand response programs[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 1405-1415.
[8]
王宇绅, 陈皓勇, 黄宇翔, 等. 多重不确定性下的虚拟电厂参与电能量和需求响应市场鲁棒优化调度策略[J]. 发电技术, 2024, 45(6):1173-1185.
摘要
目的 为应对虚拟电厂(virtual power plant,VPP)在参与电能量和需求响应市场时所面临的新能源出力和负荷不确定性问题,提出一种考虑多重不确定性的鲁棒优化调度策略,旨在降低鲁棒优化的保守性并提高VPP的经济效益。 方法 构建基于条件风险价值(conditional value at risk,CVaR)的多面体不确定性集,在此基础上,考虑风电、光伏出力和负荷的不确定性,建立VPP参与电能量和需求响应市场策略的日前两阶段鲁棒优化模型。基于行列生成(column-and-constraint generation,C&CG)算法和拉格朗日对偶理论,将所建模型分为可利用求解器求解的主问题和子问题。最后,利用蒙特卡罗方法生成大量风电、光伏和负荷数据,对所提策略进行仿真分析,并与其他方案的优化结果进行对比。 结果 所提策略采用基于CVaR的多面体不确定性集,能够充分利用历史数据,相比于采用传统不确定性集的方案,VPP的总成本降低了约2%。 结论 所提策略可以显著降低鲁棒优化结果的保守性,并在多重不确定性条件下提升VPP参与市场的经济性。
WANG Yushen, CHEN Haoyong, HUANG Yuxiang, et al. Robust optimal scheduling strategy for virtual power plant participation in electric energy and demand response markets under multiple uncertainties[J]. Power Generation Technology, 2024, 45(6): 1173-1185.

Objectives To address the uncertainties of renewable energy output and load faced by virtual power plant (VPP) when participating in electric energy and demand response markets, a robust optimal scheduling strategy considering multiple uncertainties was proposed to reduce the conservativeness of robust optimization and improve the economic benefits of VPP. Methods A polyhedral uncertainty set based on conditional value at risk (CVaR) was constructed. On this basis, considering the uncertainties of wind power, photovoltaic output and load, a day-ahead two-stage robust optimization model of VPP participating in electric energy and demand response markets was established. Then, using a column-and-constraint generation (C&CG) algorithm and Lagrangian dual theory, the model was divided into a master problem and a sub-problem that can be solved by a solver. Finally, Monte Carlo method was used to generate a large number of wind power, photovoltaic and load data. The proposed strategy was simulated and analyzed, and compared with the optimization results of other schemes. Results The proposed strategy adopting a polyhedral uncertainty set based on CVaR can make full use of historical data. Compared with the scheme using traditional uncertainty set, the total cost of VPP is reduced by about 2%. Conclusions The proposed strategy can significantly reduce the conservativeness of robust optimization results and enhance the economy of VPP participation in the market under multiple uncertainties.

[9]
MEI S, TAN Q, LIU Y, et al. Optimal bidding strategy for virtual power plant participating in combined electricity and ancillary services market considering dynamic demand response price and integrated consumption satisfaction[J]. Energy, 2023, 284: 128592.
[10]
解百臣, 章露, 郝鹏. 基于主从博弈的虚拟电厂实时定价需求响应机制研究[J]. 中国管理科学, 2024, 32(12):312-322.
XIE Baichen, ZHANG Lu, HAO Peng. Real-time pricing demand response mechanism of virtual power plant based on stackelberg game[J]. Chinesejournal of Management Science, 2024, 32(12):312-322.
[11]
杨力帆, 周鲲, 齐增清, 等. 基于需求响应的虚拟电厂多时间尺度优化调度[J]. 电网与清洁能源, 2024, 40(3): 10-21.
YANG Lifan, ZHOU Kun, QI Zengqing, et al. A multi-time scale optimal scheduling strategy of virtual power plants based on demand response[J]. Power System and Clean Energy, 2024, 40(3): 10-21.
[12]
ZHOU K, PENG N, YIN H, et al. Urban virtual power plant operation optimization with incentive-based demand response[J]. Energy, 2023, 282: 128700.
[13]
LI D, WANG M, SHEN Y, et al. Low-carbon operation strategy of virtual power plant considering progressive demand response[J]. International Journal of Electrical Power & Energy Systems, 2024, 161: 110176.
[14]
苏志鹏, 王莉, 梁欣怡, 等. 考虑阶梯式碳交易及综合需求响应的虚拟电厂优化调度[J]. 中国电力, 2023, 56(12): 174-182.
SU Zhipeng, WANG Li, LIANG Xinyi, et al. Optimal dispatch of virtual power plant considering stepped carbon trading and comprehensive demand response[J]. Electric Power, 2023, 56(12): 174-182.
[15]
鞠平, 姜婷玉, 黄桦. 浅论新型电力系统的“三自”性质[J]. 中国电机工程学报, 2023, 43(7):2598-2608.
JU Ping, JIANG Tingyu, HUANG Hua. Brief discussion on the “Three-self” nature of the new power system[J]. Pro-ceedings of the CSEE, 2023, 43(7):2598-2608.
[16]
董雷, 陈振平, 韩富佳, 等. 基于图卷积神经网络与K-means聚类的居民用户集群短期负荷预测[J]. 电网技术, 2023, 47(10):4291-4301.
DONG Lei, CHEN Zhenping, HAN Fujia, et al. Short-term load forecasting of residential user groups based on graph convolutional neural network and K-means clustering[J]. Power System Technology, 2023, 47(10):4291-4301.
[17]
周亦洲, 孙国强, 黄文进, 等. 多区域虚拟电厂综合能源协调调度优化模型[J]. 中国电机工程学报, 2017, 37(23):6780-6790,7069.
ZHOU Yizhou, SUN Guoqiang, HUANG Wenjin, et al. Optimized multi-regional integrated energy coordinated sche-duling of a virtual power plant[J]. Proceedings of the CSEE, 2017, 37(23):6780-6790,7069.
[18]
周楠. 计及需求响应的用户侧光伏微电网储能配置方法[D]. 北京: 华北电力大学, 2017.
ZHOU Nan. Optimal method for battery storage configuration in PV-based microgrid considering demand response[D]. Beijing: North China Electric Power University, 2017.
[19]
王俐英, 董厚琦, 宋美琴, 等. 计及需求响应不确定性的综合能源系统多目标优化调度管理[J]. 运筹与管理, 2022, 31(6): 32-39.
摘要
需求响应作为电力系统的重要调节手段,可显著提升系统灵活性和经济性。利用价格弹性构建了包含价格与激励措施的需求响应模型,并在此基础上考虑需求响应的不确定性,以综合能源系统经济性和环保性为优化目标,构建了综合能源系统多目标优化调度模型。利用E约束法将多目标优化模型转化为单目标优化模型,得到Pareto最优解集,运用模糊决策法从中选取最优方案。基于实际案例进行测算,结果表明价格型与激励型需求响应手段的结合能够实现削峰填谷,有效降低系统的运行成本和碳排放量。
WANG Liying, DONG Houqi, SONG Meiqin, et al. Multi-objective optimal dispatch management of integrated energy system considering uncertainty of demand response[J]. Operations Research and Management Science, 2022, 31(6): 32-39.
As an important regulation means of power system, demand response can significantly improve system flexibility and economy. Based on the time-of-use electricity price mechanism, the demand response model including price and incentive measures is constructed by using the price elasticity matrix, and on this basis, the uncertainty of demand response is considered, and the multi-objective optimization scheduling model of the integrated energy system is constructed by taking the economy and environmental protection of the integrated energy system as the optimization objectives. The constraint method is used to transform the multi-objective optimization model into the single-objective optimization model, Pareto optimal solution set is obtained, and the fuzzy decision method is used to select the optimal scheme. Based on the actual case, the calculation results show that the combination of price and incentive demand response means can achieve peak load cutting and effectively reduce the operating cost and carbon emissions of the system.
[20]
牛文娟, 李扬, 王蓓蓓. 考虑不确定性的需求响应虚拟电厂建模[J]. 中国电机工程学报, 2014, 34(22): 3630-3637.
NIU Wenjuan, LI Yang, WANG Beibei. Demand response based virtual power plant modeling considering uncertainty[J]. Proceedings of the CSEE, 2014, 34(22): 3630-3637.
[21]
王浩丞, 高红均, 王仁浚. 计及需求响应的虚拟电厂日前市场交易策略研究[J]. 智慧电力, 2024, 52(7):64-71.
WANG Haocheng, GAO Hongjun, WANG Renjun. Day-ahead market trading strategy of virtual power plant considering demand response[J]. Smart Power, 2024, 52(7):64-71.
[22]
张伊宁, 何宇斌, 晏鸣宇, 等. 计及需求响应与动态气潮流的电-气综合能源系统优化调度[J]. 电力系统自动化, 2018, 42(20): 1-8.
ZHANG Yining, HE Yubin, YAN Mingyu, et al. Optimal dispatch of integrated electricity-natural gas system considering demand response and dynamic natural gas flow[J]. Auto-mation of Electric Power Systems, 2018, 42(20): 1-8.
[23]
LU R, HONG S H. Incentive-based demand response for smart grid with reinforcement learning and deep neural network[J]. Applied Energy, 2019, 236: 937-949.
[24]
YU M, HONG S H. Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach[J]. Applied Energy, 2017, 203: 267-279.
[25]
徐富强. 考虑经济-环境-社会的能量枢纽高维多目标区间规划方法[D]. 北京: 华北电力大学, 2021.
XU Fuqiang. High-dimensional multiobjective optimization approach for energy hub planning with consideration of economic, environmental and social factors[D]. Beijing: North China Electric Power University, 2021.
[26]
YAN N, LI X, WU Z, et al. Low-carbon economic scheduling with Demand-Side response uncertainty in regional integrated energy system[J]. International Journal of Electrical Power & Energy Systems, 2024, 156: 109691.
[27]
陈湘元, 吴公平, 龙卓, 等. 考虑源荷不确定性及用户侧需求响应的综合能源系统多时间尺度优化调度[J]. 电力科学与技术学报, 2024, 39(3):217-227.
CHEN Xiangyuan, WU Gongping, LONG Zhuo, et al. Multi-time scale optimal dispatch of integrated energy systems considering source-load uncertainty and user-side demand response[J]. Journal of Electric Power Science and Technology, 2024, 39(3):217-227.
[28]
闫梦阳, 李华强, 王俊翔, 等. 计及综合需求响应不确定性的园区综合能源系统优化运行模型[J]. 电力系统保护与控制, 2022, 50(2): 163-175.
YAN Mengyang, LI Huaqiang, WANG Junxiang, et al. Optimal operation model of a park integrated energy system considering uncertainty of integrated demand response[J]. Power System Protection and Control, 2022, 50(2): 163-175.

基金

贵州省科技计划项目(黔科合支撑[2021]一般409)

PDF(3214 KB)

Accesses

Citation

Detail

段落导航
相关文章

/