计及新能源无功潜力的虚拟电厂无功优化运行

陶泽飞, 刘敏, 刘文霞

分布式能源 ›› 2025, Vol. 10 ›› Issue (3) : 31-41.

PDF(7250 KB)
PDF(7250 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (3) : 31-41. DOI: 10.16513/j.2096-2185.DE.25100037
虚拟电厂

计及新能源无功潜力的虚拟电厂无功优化运行

作者信息 +

Reactive Power Optimization Operation of Virtual Power Plant Considering Reactive Power Potential of New Energy Sources

Author information +
文章历史 +

摘要

随着“双碳”战略的深入推进,虚拟电厂(virtual power plant,VPP)在整合和调度新能源方面展现出显著优势,深入挖掘新能源在无功支持领域的巨大潜力是提升VPP运行经济性的有效手段之一。首先,构建了一套计及有功出力和逆变器约束的新能源无功容量评估体系。其次,为提升无功优化模型的求解速度,针对有功网损和潮流约束的非线性特性,提出基于潮流迭代的有功网损估计方法和基于变量空间优化选择的潮流线性化方法;并构建了计及新能源无功潜力和基于变量空间优化选择的VPP线性潮流无功优化模型。最后,以改进IEEE 33节点主动配电系统为例,验证了所提模型的有效性。结果表明:VPP充分利用新能源无功支持能力时,系统电压偏差减少0.673 pu,运行成本减少1 254.9元。

Abstract

With the in-depth promotion of the strategy of "carbon peak and carbon neutrality",virtual power plant (VPP) has shown significant advantages in integrating and dispatching new energy. It is one of the effective means to improve the operation economy of VPP to deeply tap the huge potential of new energy in the field of reactive power support. Firstly,a set of new energy reactive power capacity evaluation system considering active power output and inverter constraints was constructed. Secondly,in order to improve the solving speed of the reactive power optimization model,according to the nonlinear characteristics of active network loss and power flow constraints,an active network loss estimation method based on power flow iteration and a power flow linearization method based on variable space optimization selection were proposed. A VPP linear power flow reactive power optimization model considering the reactive power potential of new energy sources and based on variable space optimization selection was constructed. Finally,the improved IEEE 33-node active distribution system was taken as an example to verify the effectiveness of the proposed model. The results show that when VPP makes full use of the reactive power support ability of new energy,the system voltage deviation is reduced by 0.673 pu,and the operating cost is reduced by 1 254.9 yuan.

关键词

新能源 / 虚拟电厂 / 无功优化 / 线性潮流 / 网损估计

Key words

new energy / virtual power plant / reactive power optimization / linear power flow / power loss estimation

引用本文

导出引用
陶泽飞, 刘敏, 刘文霞. 计及新能源无功潜力的虚拟电厂无功优化运行[J]. 分布式能源. 2025, 10(3): 31-41 https://doi.org/10.16513/j.2096-2185.DE.25100037
Zefei TAO, Min LIU, Wenxia LIU. Reactive Power Optimization Operation of Virtual Power Plant Considering Reactive Power Potential of New Energy Sources[J]. Distributed Energy Resources. 2025, 10(3): 31-41 https://doi.org/10.16513/j.2096-2185.DE.25100037
中图分类号: TK01;TM73   

参考文献

[1]
康重庆, 陈启鑫, 苏剑, 等. 新型电力系统规模化灵活资源虚拟电厂科学问题与研究框架[J]. 电力系统自动化, 2022, 46(18): 3-14.
KANG Chongqing, CHEN Qixin, SU Jian, et al. Scientific problems and research framework of virtual power plant with enormous flexible distributed energy resources in new power system[J]. Automation of Electric Power Systems, 2022, 46(18): 3-14.
[2]
吴垠, 牛文娟, 诸晓骏. 考虑不同场景的虚拟电厂建模与优化分析[J]. 电测与仪表, 2024, 61(11): 40-45.
WU Yin, NIU Wenjuan, ZHU Xiaojun. Modeling and optimization analysis of virtual power plant considering different scenarios[J]. Electrical Measurement & Instru-mentation, 2024, 61(11): 40-45.
[3]
GAO H, JIN T, WANG G, et al. Low-carbon dispatching for virtual power plant with aggregated distributed energy storage considering spatiotemporal distribution of cleanness value[J]. Journal of Modern Power Systems and Clean Energy, 2024, 12(2): 346-358.
[4]
钟荣豪, 张亚超, 朱蜀, 等. 基于电-碳点对点交易的虚拟电厂联盟与配电网协同低碳运行策略研究[J]. 电网技术, 2024, 48(9): 3554-3563.
ZHONG Ronghao, ZHANG Yachao, ZHU Shu, et al. Research on collaborative low-carbon operation strategy of electricity carbon peer-to-peer trading based virtual power plant union and power distribution network[J]. Power System Technology, 2024, 48(9): 3554-3563.
[5]
XIE Y, ZHANG Y, LEE W J, et al. Virtual power plants for grid resilience: A concise overview of research and applications[J]. IEEE/CAA Journal of Automatica Sinica, 2024, 11(2): 329-343.
[6]
葛成扬, 林顺富, 谭津, 等. 含多个产消者的虚拟电厂日前协调优化运行策略[J/OL]. 电网技术, 2024: 1-14. [2024-04-15]. https://link.cnki.net/doi/10.13335/j.1000-3673.pst.2024.0350.
GE Chengyang, LIN Shunfu, TAN Jin, et al. A day-ahead optimal coordination strategy for a VPP with multiple prosumers[J/OL]. Power System Technology, 2024: 1-14. [2024-04-15]. https://link.cnki.net/doi/10.13335/j.1000-3673.pst.2024.0350.
[7]
YI Z, XU Y, WU C. Model-free economic dispatch for virtual power plants: An adversarial safe reinforcement learning approach[J]. IEEE Transactions on Power Systems, 2024, 39(2): 3153-3168.
[8]
LI B, XU Q. A machine learning-assisted distributed optimization method for inverter-based volt-VAR control in active distribution networks[J]. IEEE Transactions on Power Systems, 2024, 39(2): 2668-2681.
[9]
ULLAH N R, BHATTACHARYA K, THIRINGER T. Wind farms as reactive power ancillary service providers: Technical and economic issues[J]. IEEE Transactions on Energy Conversion, 2009, 24(3): 661-672.
[10]
黄肖琪, 周羽生, 周文晴, 等. 基于储能和无功优化的直驱机组海上风电场低电压穿越策略[J]. 电测与仪表, 2024, 61(7): 57-64.
HUANG Xiaoqi, ZHOU Yusheng, ZHOU Wenqing, et al. Low voltage ride through strategy of the D-PMSG offshore wind power farm based on energy storage and reactive power optimization[J]. Electrical Measurement & Instrumentation, 2024, 61(7): 57-64.
[11]
徐贤, 朱丹丹, 徐晓春, 等. 海上风电集群AVC子站无功电压灵敏度协同控制策略研究[J]. 电测与仪表, 2025, 62(4): 53-64.
XU Xian, ZHU Dandan, XU Xiaochun, et al. Study on cooperative reactive voltage sensitivity control strategy of AVC substations in clustered offshore wind farm[J]. Electrical Measurement & Instrumentation, 2025, 62(4): 53-64.
[12]
付红军, 孙冉, 赵华, 等. 计及机组有功与无功耦合特性的集群新能源电站无功优化[J]. 现代电力, 2022, 39(4): 422-432.
FU Hongjun, SUN Ran, ZHAO Hua, et al. Reactive power optimization of clustered new energy power stations considering active and reactive coupling characteristics of generating units[J]. Modern Electric Power, 2022, 39(4): 422-432.
[13]
王耀翔, 戴朝波, 杨志昌, 等. 考虑风电机组无功潜力的风电场无功电压控制策略[J]. 电力系统保护与控制, 2022, 50(24): 83-90.
WANG Yaoxiang, DAI Chaobo, YANG Zhichang, et al. Voltage control strategy for a wind farm considering the reactive capability of DFIGs[J]. Power System Protection and Control, 2022, 50(24): 83-90.
[14]
HUANG J, LIU M, ZHANG J, et al. Analysis and field test on reactive capability of photovoltaic power plants based on clusters of inverters[J]. Journal of Modern Power Systems and Clean Energy, 2017, 5(2): 283-289.
[15]
SADEK S M, OMRAN W A, MOUSTAFA HASSAN M A, et al. Data driven stochastic energy management for isolated microgrids based on generative adversarial networks considering reactive power capabilities of distributed energy resources and reactive power costs[J]. IEEE Access, 2020, 9: 5397-5411.
[16]
孙胜博, 饶尧, 郭威, 等. 基于改进ADMM的含分布式光伏的配电网电压无功优化方法[J]. 太阳能学报, 2024, 45(3): 506-516.
SUN Shengbo, RAO Yao, GUO Wei, et al. Volt/var optimization method of distribution network with distributed photovoltaic based on improved ADMM[J]. Acta Energiae Solaris Sinica, 2024, 45(3): 506-516.
[17]
ALI A, ABBAS G, KEERIO M U, et al. A bi-level techno-economic optimal reactive power dispatch considering wind and solar power integration[J]. IEEE Access, 2023, 11: 62799-62819.
[18]
孙浩锋, 章健, 熊壮壮, 等. 含风光储联合发电系统的主动配电网无功优化[J]. 电测与仪表, 2023, 60(2): 104-110,125.
SUN Haofeng, ZHANG Jian, XIONG Zhuangzhuang, et al. Reactive power optimization of active distribution network with wind-photovoltaic-energy storage hybrid generation system[J]. Electrical Measurement & Instrumentation, 2023, 60(2): 104-110,125.
[19]
王耀翔. 基于风电场无功容量评估的电压控制策略研究[D]. 北京: 华北电力大学, 2022.
WANG Yaoxiang. Research on voltage control strategy based on reactive power capacity assessment of wind farm[D]. Beijing: North China Electric Power University, 2022.
[20]
CALDERARO V, CONIO G, GALDI V, et al. Optimal decentralized voltage control for distribution systems with inverter-based distributed generators[J]. IEEE Transactions on Power Systems, 2014, 29(1): 230-241.
[21]
吴科成, 高志华, 刘瑞宽, 等. 考虑分布式储能功率四象限输出的主动配电网鲁棒优化调度模型[J]. 南方电网技术, 2021, 15(11): 75-84.
WU Kecheng, GAO Zhihua, LIU Ruikuan, et al. Robust optimal scheduling model of active distribution network considering four-quadrant output of distributed energy storage power[J]. Southern Power System Technology, 2021, 15(11): 75-84.
[22]
周良才, 周毅, 沈维健, 等. 基于深度强化学习的新型电力系统无功电压优化控制[J]. 电测与仪表, 2024, 61(9): 182-189.
ZHOU Liangcai, ZHOU Yi, SHEN Weijian, et al. Reactive voltage optimization control of novel power system based on deep reinforcement learning[J]. Electrical Measurement & Instrumentation, 2024, 61(9): 182-189.
[23]
YANG Z, XIE K, YU J, et al. A general formulation of linear power flow models: Basic theory and error analysis[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1315-1324.
[24]
KHAN I, LI Z, XU Y, et al. Distributed control algorithm for optimal reactive power control in power grids[J]. International Journal of Electrical Power & Energy Systems, 2016, 83: 505-513.
[25]
高红均, 刘俊勇, 沈晓东, 等. 主动配电网最优潮流研究及其应用实例[J]. 中国电机工程学报, 2017, 37(6): 1634-1645.
GAO Hongjun, LIU Junyong, SHEN Xiaodong, et al. Optimal power flow research in active distribution network and its application examples[J]. Proceedings of the CSEE, 2017, 37(6): 1634-1645.
[26]
闫庆友, 刘达, 李金孟, 等. 基于场景生成与IGDT的风光-碳捕集-P2G虚拟电厂经济调度[J]. 智慧电力, 2023, 51(2):1-7.
YAN Qingyou, LIU Da, LI Jinmeng, et al. Economic dispatching of wind power-PV- carbon capture - P2G virtual power plant based on scenario generating and IGDT[J]. Smart Power, 2023, 51(2):1-7.
[27]
王宇绅, 陈皓勇, 黄宇翔, 等. 多重不确定性下的虚拟电厂参与电能量和需求响应市场鲁棒优化调度策略[J]. 发电技术, 2024, 45(6):1173-1185.
摘要
目的 为应对虚拟电厂(virtual power plant,VPP)在参与电能量和需求响应市场时所面临的新能源出力和负荷不确定性问题,提出一种考虑多重不确定性的鲁棒优化调度策略,旨在降低鲁棒优化的保守性并提高VPP的经济效益。 方法 构建基于条件风险价值(conditional value at risk,CVaR)的多面体不确定性集,在此基础上,考虑风电、光伏出力和负荷的不确定性,建立VPP参与电能量和需求响应市场策略的日前两阶段鲁棒优化模型。基于行列生成(column-and-constraint generation,C&CG)算法和拉格朗日对偶理论,将所建模型分为可利用求解器求解的主问题和子问题。最后,利用蒙特卡罗方法生成大量风电、光伏和负荷数据,对所提策略进行仿真分析,并与其他方案的优化结果进行对比。 结果 所提策略采用基于CVaR的多面体不确定性集,能够充分利用历史数据,相比于采用传统不确定性集的方案,VPP的总成本降低了约2%。 结论 所提策略可以显著降低鲁棒优化结果的保守性,并在多重不确定性条件下提升VPP参与市场的经济性。
WANG Yushen, CHEN Haoyong, HUANG Yuxiang, et al. Robust optimal scheduling strategy for virtual power plant participation in electric energy and demand response markets under multiple uncertainties[J]. Power Generation Technology, 2024, 45(6):1173-1185.

Objectives To address the uncertainties of renewable energy output and load faced by virtual power plant (VPP) when participating in electric energy and demand response markets, a robust optimal scheduling strategy considering multiple uncertainties was proposed to reduce the conservativeness of robust optimization and improve the economic benefits of VPP. Methods A polyhedral uncertainty set based on conditional value at risk (CVaR) was constructed. On this basis, considering the uncertainties of wind power, photovoltaic output and load, a day-ahead two-stage robust optimization model of VPP participating in electric energy and demand response markets was established. Then, using a column-and-constraint generation (C&CG) algorithm and Lagrangian dual theory, the model was divided into a master problem and a sub-problem that can be solved by a solver. Finally, Monte Carlo method was used to generate a large number of wind power, photovoltaic and load data. The proposed strategy was simulated and analyzed, and compared with the optimization results of other schemes. Results The proposed strategy adopting a polyhedral uncertainty set based on CVaR can make full use of historical data. Compared with the scheme using traditional uncertainty set, the total cost of VPP is reduced by about 2%. Conclusions The proposed strategy can significantly reduce the conservativeness of robust optimization results and enhance the economy of VPP participation in the market under multiple uncertainties.

[28]
高建伟, 黄宁泊, 高芳杰, 等. 基于改进信息间隙决策理论的考虑决策者风险态度的社区虚拟电厂经济-能源-环境调度策略选择[J]. 电力建设, 2024, 45(3): 39-57.
摘要
针对决策者风险态度(decision-makers risk attitudes, DMRA)和不确定性对社区综合能源系统调度策略的影响,提出了社区虚拟电厂(community virtual power plant, CVPP)的多目标调度模型。首先,建立了考虑DMRA的CVPP模型和经济-能源-环境多目标满意度模型。其次,考虑可再生能源、负荷和DMRA的不确定性,对信息间隙决策理论(information gap decision theory, IGDT)模型进行了改进。第三,在考虑DMRA的基础上,拓展自信双层语言术语下的改进VIKOR方法。最后,以某居民区为例,对该模型的有效性进行了验证。结果表明:1)基于DMRA的CVPP提供了切合实际的调度策略。2)实施需求响应后,居民成本和净碳排放分别降低了9%和91%,提高了能源供应商的利润和可再生能源的利用率,所构建的IGDT模型也改进了多个目标。3)改进后的IGDT模型的不确定性和偏差因素允许采用多种调度策略。同时,改进的VIKOR方法为决策者选择策略提供了一种新的方法。该模型为调度策略的选择提供了指导,同时也为鼓励可再生能源的使用提供了途径。
GAO Jianwei, HUANG Ningbo, GAO Fangjie, et al. Selection of economics-energy-environment scheduling strategy for a community virtual power plant considering decision-makers' risk attitudes based on improved information gap decision theory[J]. Electric Power Construction, 2024, 45(3): 39-57.
To address the impact of decision makers risk attitudes (DMRAs) and uncertainties on dispatch strategies in community-integrated energy systems, a multi-objective dispatch model of a community virtual power plant (CVPP) is proposed. First, a novel CVPP model that considers DMRA and a multi-objective economics-energy-environment satisfaction model was developed. The information gap decision theory (IGDT) model is then improved considering uncertainties of renewable energy, loads, and DMRA. Third, considering DMRA, an improved VIKOR method was proposed under self-confident double-hierarchy linguistic preference relations. Finally, the effectiveness of the proposed model was validated regarding a multi-scenario example of a residential area. The results indicate the following: 1) The novel CVPP provides realistic scheduling strategies based on the DMRA. 2) After implementing demand response, the resident cost and net carbon emissions are reduced by 9% and 91%, respectively. In addition, the energy supplier profit and renewable energy utilization rate are increased. The constructed IGDT model also improves multiple objectives. 3) The improved uncertainty and deviation factors of the IGDT model allow diverse scheduling strategies. Simultaneously, the improved VIKOR method provides a new way for decision makers to select strategies. This model serves as a guide for selecting scheduling strategies and encourages the use of renewable energy sources.
[29]
陶泽飞, 刘敏, 何旺. 计及风光不确定性和相关性的虚拟电厂参与电-碳-绿证市场优化调度[J]. 分布式能源, 2024, 9(3): 55-64.
TAO Zefei, LIU Min, HE Wang. Optimization scheduling of virtual power plants participating in electric energy trade-carbon trade-green license trade considering uncertainty and correlation of wind power and PV[J]. Distributed Energy, 2024, 9(3): 55-64.
[30]
李东东, 王啸林, 沈运帷, 等. 考虑多重不确定性的含需求响应及电碳交易的虚拟电厂优化调度策略[J]. 电力自动化设备, 2023, 43(5): 210-217,251.
LI Dongdong, WANG Xiaolin, SHEN Yunwei, et al. Optimal scheduling strategy of virtual power plant with demand response and electricity-carbon trading considering multiple uncertainties[J]. Electric Power Automation Equipment, 2023, 43(5): 210-217,251.
[31]
DE M, GOSWAMI S K. Optimal reactive power procurement with voltage stability consideration in deregulated power system[J]. IEEE Transactions on Power Systems, 2014, 29(5): 2078-2086.

基金

中国南方电网有限责任公司重点科技项目(067600KK52222008)

PDF(7250 KB)

Accesses

Citation

Detail

段落导航
相关文章

/