基于改进迭代拍卖法的分布式能源交易优化策略

刘晓君, 王刚

分布式能源 ›› 2025, Vol. 10 ›› Issue (4) : 35-43.

PDF(2772 KB)
PDF(2772 KB)
分布式能源 ›› 2025, Vol. 10 ›› Issue (4) : 35-43. DOI: 10.16513/j.2096-2185.DE.25100040

基于改进迭代拍卖法的分布式能源交易优化策略

作者信息 +

An Optimization Strategy for Distributed Energy Trading Based on Improved Iterative Auction Method

Author information +
文章历史 +

摘要

在分布式发电渗透率逐渐上升的背景下,点对点(peer-to-peer,P2P)交易是提高能源利用率的有效途径之一;然而,交易过程中,签约用户的违约行为及电量传输损耗可能导致交易效率降低和成本增加。基于此,提出一种基于分布式信誉和距离驱动的迭代拍卖机制,旨在促进信誉良好用户和电力需求相近的对等方之间的能源交易。结合历史交易表现和用户之间的用电距离,构建了信誉-距离指数,并将其引入拍卖匹配过程中;接着,采用基于博弈论的自适应算法对迭代拍卖进行建模,以实现纳什均衡。案例研究表明,所提出的分布式能源交易机制能够有效降低网络损耗和调峰负荷,保障电力可靠性,提升经济效率和社会福利。具体而言,与不考虑信誉和距离的传统模型相比,所提出的机制能减少54%的网络损耗,提升7.95%良好信誉用户的市场份额,提高10%的经济效率,并增加13.58%的社会福利。

Abstract

In the context of the increasing penetration of distributed generation, peer-to-peer (P2P) trading is one of the effective ways to improve energy utilization. However, during the trading process, improper behavior of contracted users and power losses in network transmission can lead to transaction failures and higher transmission costs. Accordingly, this paper proposes a distributed reputation- and distance-driven iterative auction mechanism aimed at facilitating energy trading between users with good reputations and those with similar power demands. By combining historical trading performance and the power distance between users, a reputation-distance index is constructed and integrated into the auction matching process. Subsequently, a game-theory-based adaptive algorithm is employed to model the iterative auction and achieve Nash equilibrium. Case studies demonstrate that the proposed decentralized mechanism effectively reduces network losses and peak loads, enhances power reliability, and improves economic efficiency and social welfare. Specifically, compared to traditional models that do not consider reputation or distance, the proposed mechanism reduces network losses by 54%, increases the market share of high-reputation users by 7.95%, improves economic efficiency by 10%, and boosts social welfare by 13.58%.

关键词

机制设计 / 点对点(P2P)能源交易 / 迭代拍卖 / 交易策略

Key words

mechanism design / peer-to-peer (P2P) energy trading / iterative auction / trading strategy

引用本文

导出引用
刘晓君, 王刚. 基于改进迭代拍卖法的分布式能源交易优化策略[J]. 分布式能源. 2025, 10(4): 35-43 https://doi.org/10.16513/j.2096-2185.DE.25100040
LIU Xiaojun, WANG Gang. An Optimization Strategy for Distributed Energy Trading Based on Improved Iterative Auction Method[J]. Distributed Energy Resources. 2025, 10(4): 35-43 https://doi.org/10.16513/j.2096-2185.DE.25100040
中图分类号: TK01;TM73   

参考文献

[1]
曹文君, 张岩, 张安彬, 等. 弱电网条件下分布式光伏并网系统谐振机理及影响特性[J]. 电力建设, 2024, 45(3): 149-159.
摘要
 随着新型电力系统源网荷储协同一体化发展,分布式光伏并网规模的不断扩大,弱电网条件逐渐形成,同时多台逆变器接入配电网末端构成复杂阻抗网络,导致并网系统阻抗特性发生变化,同时增加了系统的谐振风险。为研究弱电网条件下分布式光伏并网系统谐振特征,通过建立系统等效阻抗模型分析关键参数对谐振特性的影响。首先,建立了计及电流内环、电容电流前馈、控制系统延时的逆变器诺顿等值模型。然后,考虑弱电网条件下公共耦合点(point of common coupling, PCC)处负荷特性对系统谐振的影响,构建了表征多并网逆变器、本地负荷、线路以及交流电网等关键设备阻抗交互耦合的分布式光伏并网系统等效模型;进一步,提出了反映逆变器谐波电流以及网侧背景谐波电压等多源谐波扰动对并网电流谐振激励作用的映射模型,揭示了电网阻抗、光伏输出功率、并网逆变器数量变化对系统谐振特性的影响规律。最后,通过仿真验证了所提光伏并网系统等效模型的准确性并分析了相关因素对光伏并网谐振特性的影响。 
CAO Wenjun, ZHANG Yan, ZHANG Anbin, et al. Resonance mechanism and influence characteristics of distributed photovoltaic grid-connected system under weak grid conditions[J]. Electric Power Construction, 2024, 45(3): 149-159.
With the "source-grid-load-storage integration" and large-scale integration of distributed photovoltaic (PV), the grid condition is gradually presenting as a weak grid. Furthermore, multiple inverters are connected to the end of the distribution network to form a complex impedance network that increases the risk of resonance. To investigate the resonance mechanism of a distributed PV system under a weak grid, the Norton model of the inverter, considering the current loop, capacitive current feedforward, and control delay, is derived. Then, considering the influence of the load at the point of common coupling (PCC) on the system impedance characteristics under a weak grid, an equivalent model of a grid-connected system that can reveal the impedance matching relationship between multiple inverters, local loads, and the grid is established under weak grid conditions. Furthermore, a mapping model is proposed to reflect the excitation effect of the harmonic current of the inverter and the background harmonic voltage of the grid side on the resonance of the grid-connected current. The influence of the grid impedance, PV output power, and number of inverters on the resonance characteristics of the grid-connected system is revealed. Finally, the accuracy of the proposed equivalent model is verified through a simulation, and the influence of relevant factors on the PV grid-connected system is analyzed.
[2]
黎泽宇, 苏小玲. 一种快速跟踪功率参考值的光伏并网低电压穿越控制策略[J]. 分布式能源, 2023, 8(5): 54-60.
LI Zeyu, SU Xiaoling. A low voltage traversal control strategy for grid-connected PV based on fast tracking of power reference values[J]. Distributed Energy, 2023, 8(5): 54-60.
[3]
刘洪波, 刘永发, 任阳, 等. 高风电渗透率下考虑系统风电备用容量的储能配置[J]. 发电技术, 2024, 45(2): 260-272.
摘要
风电的高比例渗透削弱了电力系统的惯性与调频容量,储能凭借响应迅速、出力稳定等特点被广泛应用于电网的惯量支撑及频率调节工作。首先以双馈风机额定转速与有功出力为约束条件,基于转子超速控制设置最适功率预留系数,划分风机参与系统调频的风速范围。在此基础上,考虑系统频率支撑能力,提出一种风电机组与储能协调配合的调频方法。通过对储能有功出力与系统稳态恢复过程的分析,刻画了虚拟同步机控制策略下储能系统的动态频率调节特性,由此实现储能在应对系统不同工况与不同支撑需求下控制参数的最优配置。仿真结果表明,所提方法能够在保证系统调频需求的同时充分利用风电自身的调频容量,优化储能系统参数的配置结果,实现储能出力的平滑输出,提高系统的频率支撑能力。
LIU Hongbo, LIU Yongfa, REN Yang, et al. Energy storage configuration considering the system wind power reserve capacity under high wind power permeability[J]. Power Generation Technology, 2024, 45(2): 260-272.

The high proportion penetration of the wind power weakens the inertia and frequency regulation capacity of the power system. The energy storage system (ESS) is widely used in the inertia support and frequency regulation of the power grid with the characteristics of rapid response and stable output. Firstly, the rated speed and active power output of the doubly fed induction generator (DFIG) were taken as constraint conditions, and the optimal power reservation coefficient was set based on the rotor overspeed control to divide the wind speed range of the DFIG participating in the system frequency modulation. On this basis, considering the frequency support capacity of the system, a coordinated frequency modulation method of the DFIG and the ESS was proposed. Based on the analysis of the ESS active power output and system steady-state recovery process, the dynamic frequency regulation characteristics of the ESS under the control strategy of the virtual synchronous machine were described, so as to realize the optimal configuration of the control parameters of the ESS under different working conditions and different support requirements. Simulation results show that the proposed method can make full use of the frequency modulation capacity of the DFIG while ensuring the frequency modulation requirements of the system, optimize the configuration results of the ESS parameters, realize the smooth output of the ESS, and improve the frequency support ability of the system.

[4]
尚博文, 徐铭铭, 张金帅, 等. 高比例分布式光伏接入背景下配电网电压调控方法研究综述[J]. 智慧电力, 2024, 52(12): 1-11.
SHANG Bowen, XU Mingming, ZHANG Jinshuai, et al. A review of voltage regulation methods for distribution networks in the context of high proportion of distributed photovoltaic integration[J]. Smart Power, 2024, 52(12): 1-11.
[5]
刘晓华, 张涛, 刘效辰, 等. “光储直柔” 建筑新型能源系统发展现状与研究展望[J]. 暖通空调, 2022, 52(8): 1-9,82.
LIU Xiaohua, ZHANG Tao, LIU Xiaochen, et al. Development statuses and research prospects of PEDF (photovoltaics, energy storage, direct current and flexibility) building energy systems[J]. Heating Ventilating & Air Conditioning, 2022, 52(8): 1-9,82.
[6]
武昭原, 周明, 王剑晓, 等. 双碳目标下提升电力系统灵活性的市场机制综述[J]. 中国电机工程学报, 2022, 42(21): 7746-7764.
WU Zhaoyuan, ZHOU Ming, WANG Jianxiao, et al. Review on market mechanism to enhance the flexibility of power system under the dual-carbon target[J]. Proceedings of the CSEE, 2022, 42(21): 7746-7764.
[7]
丁琦, 高岩. 基于ADMM的完全去中心化P2P能源交易机制[J]. 分布式能源, 2024, 9(3): 31-38.
DING Qi, GAO Yan. Fully decentralized P2P energy trading mechanism based on ADMM[J]. Distributed Energy, 2024, 9(3): 31-38.
[8]
GUERRERO J, SOK B, CHAPMAN A C, et al. Electrical-distance driven peer-to-peer energy trading in a low-voltage network[J]. Applied Energy, 2021, 287: 116598.
[9]
WANG Y, CAO Y, LI Y, et al. Modelling and analysis of a two-level incentive mechanism based peer-to-peer energy sharing community[J]. International Journal of Electrical Power & Energy Systems, 2021, 133: 107202.
[10]
ZHOU K, CHONG J, LU X, et al. Credit-based peer-to-peer electricity trading in energy blockchain environment[J]. IEEE Transactions on Smart Grid, 2022, 13(1): 678-687.
[11]
PAUDEL A, SAMPATH L P M I, YANG J, et al. Peer-to-peer energy trading in smart grid considering power losses and network fees[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 4727-4737.
[12]
何涌, 修宇雯. 清退转型与合规激励: P2P网络借贷平台监管的演化博弈[J]. 投资研究, 2020, 39(10): 32-45.
HE Yong, XIU Yuwen. Repel and transformation and compliance incentive: The evolutionary game of regulators and P2P online lending platforms[J]. Review of Investment Studies, 2020, 39(10): 32-45.
[13]
张帅, 侯鑫彧, 巴曙松. 银行资金存管、声誉信号与P2P平台生存状况: 来自微观数据的证据[J]. 经济学(季刊), 2022, 22(6): 1977-2000.
ZHANG Shuai, HOU Xinyu, BA Shusong. Bank depository, reputation signal, and P2P platform survival status: Evidence from microdata[J]. China Economic Quarterly, 2022, 22(6): 1977-2000.
[14]
AHMAD BHATTI B, BROADWATER R. Energy trading in the distribution system using a non-model based game theoretic approach[J]. Applied Energy, 2019, 253: 113532.
[15]
ANOH K, MAHARJAN S, IKPEHAI A, et al. Energy peer-to-peer trading in virtual microgrids in smart grids: A game-theoretic approach[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1264-1275.
[16]
MORSTYN T, TEYTELBOYM A, HEPBURN C, et al. Integrating P2P energy trading with probabilistic distribution locational marginal pricing[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 3095-3106.
[17]
ZHOU K, GUO J, ZHOU J. Two-stage credit management for peer-to-peer electricity trading in consortium blockchain[J]. IEEE Transactions on Industrial Informatics, 2024, 20(3): 3868-3879.
[18]
孙偲, 郑天文, 陈来军, 等. 基于组合双向拍卖的共享储能机制研究[J]. 电网技术, 2020, 44(5): 1732-1739.
SUN Cai, ZHENG Tianwen, CHEN Laijun, et al. Energy storage sharing mechanism based on combinatorial double auction[J]. Power System Technology, 2020, 44(5): 1732-1739.
[19]
秦金磊, 孙文强, 李整, 等. 基于区块链和改进型拍卖算法的微电网电能交易方法[J]. 电力自动化设备, 2020, 40(8): 2-10.
QIN Jinlei, SUN Wenqiang, LI Zheng, et al. Energy transaction method of microgrid based on blockchain and improved auction algorithm[J]. Electric Power Automation Equipment, 2020, 40(8): 2-10.
[20]
CHEN Y, LIN F, CHEN Z, et al. Optimal production capacity matching for blockchain-enabled manufacturing collaboration with the iterative double auction method[J]. IEEE/CAA Journal of Automatica Sinica, 2025, 12(3): 550-562.
[21]
KANG J, YU R, HUANG X, et al. Enabling localized peer-to-peer electricity trading among plug-in hybrid electric vehicles using consortium blockchains[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6): 3154-3164.
[22]
XIA Y, XU Q, CHEN L, et al. The flexible roles of distributed energy storages in peer-to-peer transactive energy market: A state-of-the-art review[J]. Applied Energy, 2022, 327: 120085.
[23]
TALARI S, KHORASANY M, RAZZAGHI R, et al. Mechanism design for decentralized peer-to-peer energy trading considering heterogeneous preferences[J]. Sustainable Cities and Society, 2022, 87: 104182.
[24]
GHORBANI A, MEHRJERDI H. Distance protection with fault resistance compensation for lines connected to PV plant[J]. International Journal of Electrical Power & Energy Systems, 2023, 148: 108976.
[25]
刘洪波, 刘庸, 高旭升, 等. 基于实时戴维南等值参数估计的短路比分析[J]. 电气自动化, 2024, 46(1): 70-74.
LIU Hongbo, LIU Yong, GAO Xusheng, et al. Short circuit ratio analysis based on real-time thevenin equivalent parameter estimation[J]. Electrical Automation, 2024, 46(1): 70-74.
[26]
陕西省发展和改革委员会. 陕西省发展和改革委员会关于进一步完善分时电价机制有关事项的通知(陕发改价格〔2021〕1757号) [EB/OL]. (2021-11-10)[2021-12-02]. http://www.yangxian.gov.cn/yxzf/yxzwgk/tzgg/202112/b32863dbb6b544f2bb779b65724750f5.shtml.
[27]
国家能源局. 光伏发电数据[EB/OL]. (2023-12-30)[2024-02-28]. https://www.nea.gov.cn/2024-02/28/c_1310765696.htm.

基金

陕西省重点研发计划一般项目(2023-YBSF-177)

PDF(2772 KB)

Accesses

Citation

Detail

段落导航
相关文章

/