PDF(3552 KB)
基于协同聚类与优化分解的时序卷积双向神经网络短期光伏功率预测方法
张紫格, 舒征宇, 刘颂凯, 姚钦, 童华敏
分布式能源 ›› 2025, Vol. 10 ›› Issue (5) : 41-51.
PDF(3552 KB)
PDF(3552 KB)
基于协同聚类与优化分解的时序卷积双向神经网络短期光伏功率预测方法
Short-Term Photovoltaic Power Forecasting Based on Collaborative Clustering and Optimized Decomposition for Temporal Convolutional Bidirectional Neural Networks
针对光伏发电功率因天气变化导致的间歇性和波动性从而导致预测精度较低的问题,提出一种基于自组织映射(self-organizing map,SOM)网络和K均值(K-means)算法(S-Kmeans)的协同聚类、改进的人工旅鼠算法(improved artificial lemming algorithm,IALA)优化的变分模态分解(variational mode decomposition,VMD)与时序卷积网络(temporal convolutional networks,TCN)-双向门控循环单元(bidirectional gated recurrent unit,BiGRU)联合构建的多层级短期光伏功率预测方法。首先,根据相关性分析选出关键气象因子,采用S-Kmeans的协同聚类将光伏数据划分为晴天、多云、阴雨3种典型天气类型。在此基础上,利用IALA对VMD参数组合进行自适应优化,实现光伏功率序列的最优分解,从而更好地捕捉信号的局部特征。最后,对每个子序列构建TCN-BiGRU模型,通过分量预测与全局重构得到预测结果,提升预测精度。实验结果表明,提出的优化模型在各项性能指标上均优于对比模型,验证了其在提高短期光伏功率预测精度方面的有效性。
To address the issue of low prediction accuracy in photovoltaic power generation caused by the intermittency and volatility resulting from weather changes, this paper proposes a multi-level short-term photovoltaic power forecasting method. The method is based on collaborative clustering using self-organizing map and K-means algorithm (S-Kmeans), and an improved artificial lemming algorithm (IALA)-optimized variational mode decomposition (VMD), combined with a temporal convolutional network (TCN) and bidirectional gated recurrent unit (BiGRU). First, key meteorological factors are selected through correlation analysis, and photovoltaic data is classified into three typical weather conditions - sunny, cloudy, and rainy by using the S-Kmeans co-clustering method. Then, the IALA is employed to adaptively optimize the VMD parameters, enabling optimal decomposition of the photovoltaic power series and capturing local signal features more effectively. Finally, a TCN-BiGRU model is constructed for each subsequence, and the prediction result is obtained through component forecasting and global reconstruction, thereby improving prediction accuracy. Experimental results show that the proposed model outperforms the comparison models across all performance metrics under various weather conditions, validating its effectiveness in short-term photovoltaic power forecasting.
光伏功率预测 / 变分模态分解(VMD) / 改进人工旅鼠算法(IALA) / 时序卷积网络(TCN) / 双向门控循环单元(BiGRU)
photovoltaic power prediction / variational mode decomposition(VMD) / improved artificial lemming algorithm(IALA) / temporal convolutional network(TCN) / bidirectional gated recurrent unit(BiGRU)
| [1] |
叶小宁, 王彩霞, 时智勇, 等. 国外高比例新能源消纳分析及对中国新能源可持续发展的建议[J]. 中国电力, 2025, 58(6):137-144.
|
| [2] |
IEA. Renewables 2024, Analysis and forecast to 2030[EB/OL]. [2024-10-09]. https://www.iea.org/reports/renewables-2023/executive-summary.
|
| [3] |
付小标, 侯嘉琪, 李宝聚, 等. 一种二模态天气分型方法及其在光伏功率概率预测的应用[J]. 发电技术, 2024, 45(2):299-311.
天气分型是光伏功率预测中不可或缺的预处理步骤,为精细刻画光伏出力的不确定性,提出一种新的基于光伏功率聚类的二模态天气分类方法。该方法结合气象信息和功率信息进行天气分型,为天气分型在光伏功率预测的应用提供了一条有效的新路径。此外,该方法使用数据融合技术,依据融合数值天气预报(numeric weather prediction,NWP)气象和实际气象二者间的相关信息进行天气分型,以减少模型对NWP准确度的依赖并提高模型的鲁棒性。以吉林某光伏电站数据为例,验证了该天气分型方法的合理性,同时,将天气分型方法与功率概率预测相结合,其测算结果表明,使用所提方法进行天气分型概率预测的区间覆盖率更接近预设的置信水平,且平均带宽更窄。
|
| [4] |
杨海柱, 李庆华, 张鹏. 基于tGSSA-DELM的短期光伏发电功率预测[J]. 智慧电力, 2023, 51(10):70-77.
|
| [5] |
王海燕, 刘佳康, 邓亚平. 基于预估-校正综合BP神经网络的短期光伏功率预测[J]. 智慧电力, 2023, 51(3):46-52.
|
| [6] |
王瑞, 李哲, 逯静. 基于融合聚类和 BKA-VMD-TCN-BiLSTM 的短期光伏功率预测[J]. 电子科技大学学报, 2025, 54(4):592-603.
|
| [7] |
刘洋, 伍双喜, 朱誉, 等. 基于CEEMDAN和DBO-GRNN的风电功率超短期预测[J]. 电力建设, 2024, 45(8): 97-105.
针对风电数据波动性过大而导致的风电功率预测不精确问题,提出一种基于自适应噪声完备集合经验模态分解(complementary ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与蜣螂算法(dung beetle optimizer,DBO)优化的广义回归神经网络(generalized regression neural network,GRNN)超短期风电功率预测方法。首先将原始风功率序列进行时滞特性分析,选取与预测时刻相关性强的时序进行多路时序建模;然后对相关性强的时序进行CEEMDAN分解,得到一组本征模态分量(intrinsic mode function,IMF)和剩余分量;其次将上述两组分量输入经蜣螂优化算法优化的GRNN网络进行各分量预测;然后将各预测分量叠加,得到最终预测结果。算例分析表明,所提的CEEMDAN-DBO-GRNN预测模型的预测精度更高,而且CEEMDAN能够减少风电功率波动性与随机性对预测结果的影响,同时利用蜣螂算法优化后的超参数模型进行预测,在一定程度上提高了超短期风电功率预测的精度。
To address the problem of inaccurate wind power prediction caused by the excessive volatility of wind power data, this paper proposes a generalized regression neural network (GRNN) method based on the optimization of complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and dung beetle optimizer (DBO). A combination of GRNN and DBO optimization is used for ultra-short-term wind power prediction. First, the original wind power sequence is subjected to time-lag characteristic analysis, and the time series with a strong correlation with the predicted moments is selected for multiplexed time-series modeling. Subsequently, the time series with strong time series are subjected to CEEMDAN decomposition, and a set of intrinsic mode functions (IMFs) and a residual term are obtained. Second, the two sets of the above components are inputted into the GRNN network optimized by the DBO algorithm for the prediction of the components. Subsequently, the prediction components are superimposed to obtain the final prediction result. Example analysis shows that the CEEMDAN-DBO-GRNN prediction model proposed in this paper has higher prediction accuracy, and CEEMDAN can reduce the influence of wind power volatility and randomness on the prediction results. The prediction of the hyperparameter model optimized by the DBO algorithm improves the accuracy of the ultra-short-term wind power prediction to a certain extent.
|
| [8] |
何瑨麟, 郝建新, 苏成飞, 等. 基于SVMD-BO-BiTCN的超短期光伏发电功率预测[J]. 分布式能源, 2024, 9(5):23-31.
|
| [9] |
黄文琦, 方必武, 戴珍, 等. 基于多源数据图表示学习的风电出力预测方法[J]. 电力建设, 2023, 44(11): 43-53.
高精度的风电出力预测技术是实现碳中和的关键技术之一,随着智能电网的逐步建设,风电出力预测系统逐步从分散模式趋向于集中模式,其表现为一个系统集成多个风电场站的数据和模型。传统预测方法无法较好地处理这种大数据融合场景,也无法较好表征多个风电场站之间的关系,因此,提出了基于多源数据图表示学习的风电出力预测方法。通过基于Stacking集成学习框架思想和图理论对多个风电场站形成的特征数据构建图数据,其中,图数据的节点为历史风电出力数据、基础方法预测值数据以及气象、位置等多源数据,边为多个风电场站之间的相关性,从而实现对多个场站数据的融合表征。最后搭建残差图卷积神经网络对所构建的图数据进行学习训练,并通过公开数据集验证了所提算法具有更好的结果。
High-precision wind power output forecasting stands as a pivotal technology in achieving carbon neutrality. As the smart grid infrastructure steadily advances, the wind power output forecasting system is transitioning from a decentralized mode to a centralized one, characterized by the integration of data and models from various wind farm stations. Consequently, this paper introduces a wind power output forecasting method based on multi-source data graph representation learning. The graph data is established using a stacked integrated learning framework and graph theory. In this framework, the nodes represent historical wind power output data, predicted values from the base method, meteorological and location data, among others. The edges denote correlations among multiple wind farm stations, facilitating the fused representation of data from these diverse stations. Subsequently, residual graph convolutional neural networks are constructed to learn and train the generated graph data. The effectiveness of the proposed algorithm is substantiated through validation using publicly available datasets, indicating superior results. |
| [10] |
陈庆明, 梁奇峰, 孙颖楷, 等. 模态分解与参数优化结合的LSTM光伏发电功率预测[J]. 机械设计与制造, 2025(7):305-310,315.
|
| [11] |
赵如意, 王晓辉, 郑碧煌, 等. 基于特征优化和混合改进灰狼算法优化BiLSTM网络的短期光伏功率预测[J]. 电网技术, 2025, 49(1):210-222.
|
| [12] |
汪繁荣, 梅涛, 卢璐. 基于相似日聚类和VMD-LTWDBO-BiLSTM的短期光伏功率预测[J]. 智慧电力, 2024, 52(10):56-63, 111.
|
| [13] |
史加荣, 殷诏. 基于GRU-BLS的超短期光伏发电功率预测[J]. 智慧电力, 2023, 51(9):38-45.
|
| [14] |
魏伟, 余鹤, 叶利, 等. 基于 FCM-SENet-TCN 的低压台区光伏超短期功率预测方法[J]. 中国电力, 2025, 58(6):172-179.
|
| [15] |
武新章, 王泽宇, 代伟, 等. 基于异质聚类与 Stacking 的双集成光伏发电功率预测[J]. 电网技术, 2023, 47(1):275-283.
|
| [16] |
冯建铭, 希望·阿不都瓦依提, 蔺红. 基于聚类SABO-VMD和组合神经网络的短期光伏发电功率预测[J]. 太阳能学报, 2025, 46(2):358-366.
|
| [17] |
杨荔强, 崔双喜. 基于VMD-SSA-HKELM的短期光伏功率预测[J]. 电源技术, 2024, 48(6):1154-1159.
为提高光伏功率的短期预测精度,提出一种变分模态分解(VMD)与麻雀搜索算法(SSA)优化混合核极限学习机(HKELM)相结合的短期光伏发电功率预测模型。运用皮尔逊相关系数(PCC)选取与光伏发电功率相关性较强的气象因素作为预测模型的输入变量;以平方欧氏距离作为衡量样本相似性的依据,筛选出不同天气类型下的最优训练样本。为降低数据的非平稳性,利用VMD将原始光伏功率数据分解为一系列不同带宽的模态分量,对各模态分量分别建立HKELM模型,通过引入SSA算法对HKELM模型进行参数寻优。将各模态分量的预测结果进行求和重构,得到光伏功率预测结果。仿真结果表明,相比于反向传播神经网络(BPNN)、极限学习机(ELM)、核极限学习机(VMD-KELM)和混合核极限学习机(VMD-HKELM)模型,VMD-SSA-HKELM模型具有更高的预测精度,验证了本文模型的精确性和有效性。
In order to improve the prediction accuracy of short-term photovoltaic power, a short-term photovoltaic power prediction model was presented, which combined variational mode decomposition and hybrid kernel extreme learning machine optimized by sparrow search algorithm. Pearson correlation coefficient was used to select the meteorological factors strongly correlated with photovoltaic power as the input variables of the forecast model. The square Euclidean distance was used as the basis to measure the sample similarity, and the optimal training samples under different weather types were selected. In order to reduce the non-stationary of the data, VMD was used to decompose the original photovoltaic power data into a series of modal components with different bandwidths, and the HKELM models were established for each modal component. SSA algorithm was introduced to optimize the parameters of the HKELM model. The predicted results of each mode component were summed and reconstructed, and the predicted results of photovoltaic power were obtained. The simulation results show that the proposed model has higher prediction accuracy than BPNN, ELM, VMD-KELM and VMD-HKELM models, which verifies the accuracy and effectiveness of the proposed model.
|
| [18] |
乔雅宁, 贾宇琛, 高立艾, 等. 基于VMD-IDBO-LSTM的光伏功率预测模型[J]. 现代电子技术, 2025, 48(6):169-174.
|
| [19] |
唐晓乐, 康滟婷, 卢浩. 基于双层分解和改进多目标浣熊优化算法的BiLSTM光伏功率预测[J/OL]. 太阳能学报,1-9[2025-05-24].https://doi.org/10.19912/j.0254-0096.tynxb.2024-1931.
|
| [20] |
付雪姣, 吕可欣, 吴林林, 等. 考虑不同天气类型样本的光伏功率日内预测模型[J]. 分布式能源, 2024, 9(2):40-47.
|
| [21] |
毕贵红, 张梓睿, 赵四洪, 等. 基于多模式分解和多分支输入的光伏功率超短期预测[J]. 高电压技术, 2024, 50(9):3837-3849.
|
| [22] |
|
| [23] |
曹欣宇, 邹丽. 基于改进BOA优化KELM的焊接接头疲劳寿命预测[J]. 计算机技术与发展, 2025, 35(8):189-197.
|
| [24] |
周陈江, 杜峰. 基于 VMD-EBWO-BiLSTM 的多维时序光伏功率预测研究[J]. 宇航计测技术, 2025, 45(4):33-40,50.
|
| [25] |
宋绍剑, 姜屹远, 刘斌. 一种TCN的改进模型及其在短期光伏功率区间预测的应用[J]. 计算机应用研究, 2023, 40(10):3064-3069.
|
| [26] |
李翰章, 冯江涛, 王鹏程, 等. 基于TDE-SO-AWM-GRU的光伏发电功率预测模型[J]. 中国电力, 2024, 57(12):41-49.
|
| [27] |
彭曙蓉, 陈慧霞, 孙万通, 等. 基于改进LSTM的光伏发电功率预测方法研究[J]. 太阳能学报, 2024, 45(11):297-302.
|
/
| 〈 |
|
〉 |