基于场景预测的风电场经济调度模型

刘永前, 马远驰

分布式能源 ›› 2016, Vol. 1 ›› Issue (1) : 14-21.

PDF(2336 KB)
PDF(2336 KB)
分布式能源 ›› 2016, Vol. 1 ›› Issue (1) : 14-21. DOI: 10.16513/j.cnki.10-1427/tk.2016.01.004
学术研究

基于场景预测的风电场经济调度模型

作者信息 +

Economic Dispatch Model in Wind Farm Based on Wind Power Scenario Prediction

Author information +
文章历史 +

摘要

The volatility of wind power and the uncertainties in the wind power forecasting pose serious challenges to unit start-up and shutdown and the load distribution in the wind farm. The practice of utilizing scenario prediction to describe the uncertainties in the wind power forecasting can enhance the robustness of the scheduling decision. The economic dispatch method for wind farm based on scenario prediction, with the goal of the minimum operating cost, can optimize the unit start-up and shutdown and the load distribution planning. We adopt the improved genetic algorithm to compute the optimized dispatch models. On this basis, we have analyzed the influence of the major costs on the total costs in the operation of wind farm and proposed strategies of improving the grid's adopt capacity for wind power and lowering the operating costs in wind farm. The example simulation result is consistent with the actual operational situation in wind farm and shows that the economic dispatch method is valid in wind farm.

关键词

风电场 / 场景预测 / 经济调度 / 遗传算法 / 灵敏度分析 / wind farm / scenario prediction / economic dispatch / genetic algorithm / sensitivity analysis

引用本文

导出引用
刘永前, 马远驰, LIU Yongqian, . Economic Dispatch Model in Wind Farm Based on Wind Power Scenario Prediction[J]. 分布式能源. 2016, 1(1): 14-21 https://doi.org/10.16513/j.cnki.10-1427/tk.2016.01.004
[J]. Distributed Energy Resources. 2016, 1(1): 14-21 https://doi.org/10.16513/j.cnki.10-1427/tk.2016.01.004
中图分类号:     

参考文献

[1]
Global Wind Energy Council. The global wind energy statistics 2015[R]. Global Wind Energy Council,2016.
[2]
王彩霞鲁宗相. 风电功率预测信息在日前机组组合中的应用[J]. 电力系统自动化201135(7):13-18.
WANG Caixia, LU Zongxiang. Unit commitment based on wind power forecast[J]. Automation of Electric Power Systems201135(7):13-18.
[3]
孙元章吴俊李国杰,等. 基于风速预测和随机规划的含风电场电力系统动态经济调度[J]. 中国电机工程学报200929(4):41-47.
SUN Yuanzhang, WU Jun, LI Guojie,et al. Dynamic economic dispatch considering wind power penetration based on wind speed forecasting and stochastic programming[J]. Proceedings of the CSEE200929(4):41-47.
[4]
张昭遂孙元章李国杰,等. 计及风电功率不确定性的经济调度问题求解方法[J]. 电力系统自动化201235(22):125-130.
ZHANG Zhaosui, SUN Yuanzhang, LI Guojie,et al. A solution of economic dispatch problem considering wind power uncertainty[J]. Automation of Electric Power Systems201235(22):125-130.
[5]
ZHANG Z S, SUN Y Z, GAO D W,et al. A versatile probability distribution model for wind power forecast errors and its application in economic dispatch[J]. IEEE Transactions on Power Systems201328(3):3114-3125.
[6]
张晋华林媛媛刘永前,等. 基于降低风电机组叶片损伤的风电机组组合优化[J]. 电力系统保护与控制201341(20):80-86.
ZHANG Jinhua, LIN Yuanyuan, LIU Yongqian,et al. Wind turbine unit commitment optimization based on the reduced blade damage[J]. Power System Protection and Control201341(20):80-86.
[7]
ÁLVAREZ-MIRANDA E, CAMPOS-VALDÉS C, RAHMANN C. Two-stage robust UC including a novel scenario-based uncertainty model for wind power applications[J]. Energy Conversion and Management2015101:94-105.
[8]
YAN Jie, ZHANG Jinhua, LIU Yongqian,et al. Unit commitment in wind farms based on a glowworm metaphor algorithm[J]. Electric Power Systems Research2015129(12):94-104.
[9]
JIN Lin, CHENG Lin, CHANG Yao,et al. Reliability based power systems planning and operation with wind power integration:A review to models,algorithms and applications[J]. Renewable and Sustainable Energy Reviews201431(1):921-934.
[10]
JI Bin, YUAN Xiaohui, CHEN Zhihuan,et al. Improved gravitational search algorithm for unit commitment considering uncertainty of wind power[J]. Energy201467(2):52-62.
[11]
AHMADI H, SEIFI H. Probabilistic tuning of power system stabilizers considering the wind farm generation uncertainty[J]. International Journal of Electrical Power & Energy Systems201463:565-576.
[12]
MAHARI A, ZARE K. A solution to the generation scheduling problem in power systems with large-scale wind farms using MICA[J]. International Journal of Electrical Power & Energy Systems201454(1):1-9.
[13]
张慧玲高小力刘永前,等. 三种主流风电场功率预测算法适应性对比研究[J]. 现代电力201532(6):7-13.
ZHANG Huiling, GAO Xiaoli, LIU Yongqian,et al. Adaptability comparison of three mainstream short-term wind power prediction methods[J]. Modern Electric Power201532(6):7-13.
[14]
阎洁刘永前韩爽,等. 考虑流动相关性的风电场机组分组功率预测方法[J]. 现代电力201532(1):25-30.
YAN Jie, LIU Yongqian, HAN Shuang,et al. Power prediction method for grouping wind turbine generations by considering flow correlation[J]. Modern Electric Power201532(1):25-30.
[15]
阎洁. 风电场功率预测不确定性分析方法及其应用研究[D]. 北京:华北电力大学,2012.
YAN Jie. Research on uncertainty analysis method for wind power prediction and its application[D]. Beijing:North China Electric Power University,2012.
[16]
阎洁刘永前韩爽,等. 分位数回归在风电功率预测不确定性分析中的应用[J]. 太阳能学报201334(12):2101-2107.
YAN Jie, LIU Yongqian, HAN Shuang,et al. Quantile regression in uncertainty analysis of wind power forecasting[J]. Acta Energiae Solaris Sinica201334(12):2101-2107.
[17]
HETZER J, YU D C, Bhattarai K. An economic dispatch model incorporating wind power[J]. IEEE Transactions on Energy Conversion200823(2):603-611.
[18]
SHAMSHAD A, BAWADI M A, HUSSIN W M A W,et al. First and second order Markov chain models for synthetic generation of wind speed time series[J]. Energy200530(5):693-708.
[19]
HOCAOGLU F O, GEREK O N, KURBAN M. The effect of markov chain state size for synthetic wind speed generation[C]//International Conference on Probabilistic Methods Applied to Power Systems. 2008: 1-4.
[20]
张步涵邵剑吴小珊,等. 基于场景树和机会约束规划的含风电场电力系统机组组合[J]. 电力系统保护与控制201341(1):127-135.
ZHANG Buhan, SHAO Jian, WU Xiaoshan,et al. Unit commitment with wind farms using scenario tree and chance-constrained programming[J]. Power System Protection and Control201341(1):127-135.
[21]
吴小珊张步涵袁小明,等. 求解含风电场的电力系统机组组合问题的改进量子离散粒子群优化方法[J]. 中国电机工程学报201333(4):45-52.
WU Xiaoshan, ZHANG Buhan, YUAN Xiaoming,et al. Slutions to unit commitment problems in power systems with wind farms using advanced quantum inspired binary PSO[J]. Proceedings of the CSEE201333(4):45-52.
[22]
DUPACOVA J, GROWE-KUSKA N, ROMISCH W. Scenario reduction in stochastic programming:An approach using probability metrics[J]. Mathematical Programming200395(3):493-511.
[23]
张晋华. 风电场内机组优化调度研究[D]. 北京:华北电力大学,2014.
ZHANG Jinhua. Research on unit optimal dispatch in wind farm[D]. Beijing:North China Electric Power University,2014.
[24]
肖运启贺贯举. 大型风电机组限功率运行特性分析及其优化调度[J]. 电力系统自动化201438(20):18-25.
XIAO Yunqi, HE Guanju. Power-limited operation chracteristic analysis and optimal scheduling for large scale wind turbines[J]. Automation of Electric Power Systems201438(20):18-25.

基金

国家自然科学基金项目(51376062)
Project supported by National Natural Science Foundation of China(51376062 )

PDF(2336 KB)

Accesses

Citation

Detail

段落导航
相关文章

/