基于经验模态分解和模糊机会约束的混合储能容量配置方法

曹超, 马玉鑫, 常悦, 关瑞丰

分布式能源 ›› 2016, Vol. 1 ›› Issue (3) : 43-48.

PDF(1080 KB)
PDF(1080 KB)
分布式能源 ›› 2016, Vol. 1 ›› Issue (3) : 43-48. DOI: 10.16513/j.cnki.10-1427/tk.2016.03.007

基于经验模态分解和模糊机会约束的混合储能容量配置方法

作者信息 +

Capacity Allocation Method of Hybrid Energy Storage System Based on Empirical Mode Decomposition and Fuzzy Chance Constrained Programming

Author information +
文章历史 +

摘要

为了进行储能容量配置,采用经验模态分解方法,从频域上对储能功率进行划分,并分配给能量型电池和功率型电池,以储能成本最小为约束,以修正系数作为模糊变量,建立模糊机会约束模型,并用于模糊模拟的遗传算法求解。通过仿真算例得出储能电池和超级电容器系统的容量和功率,达到了储能容量配置的要求,采用混合储能系统可以满足平滑风电功率波动的要求,同时充分发挥储能电池和超级电容器的特性,将储能电池和超级电容器的荷电状态控制在合理范围内,保证了储能系统能够稳定运行。

Abstract

Empirical mode decomposition (EMD) method was introduced to make capacity configuration for the hybrid energy storage system (HESS), dividing the energy storage power in frequency domain and assigning to energy density and power density batteries. Capacity allocation model, based on fuzzy chance constrained programming, was built with the minimum annual cost and state of charge(SOC) confidence level as constraints. The fuzzy simulation-based genetic algorithm was used to solve the fuzzy model. The capacity and power of storage battery and super capacitor were obtained by simulation calculation. The hybrid energy storage system can be introduced to smooth the fluctuations of wind power-output and control the load of storage battery and super capacitor, so as to guarantee the stable operation of storage system.

关键词

新能源 / 风力发电 / 混合储能平滑 / 容量配置 / 遗传算法

Key words

new energy / wind power / hybrid energy storage system(HESS) smoothing / capacity allocation / genetic algorithm

引用本文

导出引用
曹超, 马玉鑫, 常悦, . 基于经验模态分解和模糊机会约束的混合储能容量配置方法[J]. 分布式能源. 2016, 1(3): 43-48 https://doi.org/10.16513/j.cnki.10-1427/tk.2016.03.007
Chao CAO, Yuxin MA, Yue CHANG, et al. Capacity Allocation Method of Hybrid Energy Storage System Based on Empirical Mode Decomposition and Fuzzy Chance Constrained Programming[J]. Distributed Energy Resources. 2016, 1(3): 43-48 https://doi.org/10.16513/j.cnki.10-1427/tk.2016.03.007
中图分类号:     

参考文献

[1]
周孝信鲁宗相刘应梅,等. 中国未来电网的发展模式和关键技术[J]. 中国电机工程学报2014, 34(29): 4999-5008.
ZHOU Xiaoxin, LU Zongxiang, LIU Yingmei, et al. Development models and key technologies of future grid in China[J]. Proceedings of the CSEE, 2014, 34(29): 4999-5008.
[2]
李建林田立亭来小康. 能源互联网背景下的电力储能技术展望[J]. 电力系统自动化2015, 39(23): 15-22..
LI Jianlin, TIAN Liting, LAI Xiaokang, et al. Outlook of electrical energy storage technologies under energy internet background [J]. Automation of Electric Power Systems, 2015, 39(23): 15-22.
[3]
胡娟杨水丽侯朝勇,等. 规模化储能技术典型示范应用的现状分析与启示[J]. 电网技术2015, 39(4): 879-885.
HU Juan, YANG Shuili, HOU Chaoyong, et al. Present condition analysis on typical demonstration application of large-scale energy storage technology and its enlightenment[J]. Power System Technology, 2015. 39(4): 879-885.
[4]
LI X. Fuzzy adaptive Kalman filter for wind power output smoothing with battery energy storage system[J]. IET Renewable Power Generation, 2012, 6(5): 340-347.
[5]
LI X, LI J, XU L, et al. Online management of lithium-ion battery based on time-triggered controller area network for fuel-cell hybrid vehicle applications[J]. Journal of Power Sources, 2010, 195(10): 3338-3343.
[6]
韩涛卢继平乔梁,等. 大型并网风电场储能容量优化方案[J]. 电网技术2010, 34(1): 169-173.
HAN Tao, LU Jiping, QIAO Liang, et al. Optimized scheme of energy-storage capacity for grid-connected large-scale wind farm[J]. Power System Technology, 2010, 34(1): 169-173.
[7]
吴云亮孙元章徐箭,等. 基于饱和控制理论的储能装置容量配置方法[J]. 中国电机工程学报2011, 31(22): 32-39.
WU Yunyao, SUN Yuanzhang, XU Jian, et al. Determination methodology for energy storage capacity based on saturation control theory[J]. Proceedings of the CSEE, 2011, 31(22): 32-39.
[8]
韩晓娟程成籍天明,等. 计及电池使用寿命的混合储能系统容量优化模型[J]. 中国电机工程学报2013, 33(34): 91-97.
HAN Xiaojuan, CHENG Cheng, JI Tianming, et al. Capacity optimal modeling of hybrid energy storage systems considering battery life[J]. Proceedings of the CSEE, 2013, 33(34): 91-97.
[9]
YOSHIMOTO K, NANAHARA T, KOSHIMIZU G. New control method for regulating state-of-charge of a battery in hybrid wind power/battery energy storage system[C]//Power Systems Conference and Exposition, Atlanta, 2006: 1244-1251.
[10]
孟顺谢桦,基于经验模态分解的平滑可再生能源功率波动的储能容量优化[J]. 电源学报2014, 5(5): 7-11.
MENG Shun, XIE Hua. Energy storage capacity optimization in smoothing renewable energy power fluctuation based on empirical mode decomposition[J]. Journal of Power Supply, 2014, 5(5): 7-11.
[11]
韩晓娟陈跃燕张浩,等. 基于小波包分解的混合储能技术在平抑风电场功率波动中的应用[J]. 中国电机工程学报2013, 33(19): 8-13.
HAN Xiaojuan, CHEN Yueyan, ZHANG Hao, et al. Application of hybrid energy stor age technology based on wavelet packet decomposition in smoothing the fluctuations of wind power [J]. Proceedings of the CSEE, 2013, 33(19): 8-13.
[12]
PATRICH F, GABRIEL B, PAULO G. Empirical mode decomposition as a filter bank[J]. IEEE Transactions on Signal Processing Letters, 2004, 11(2): 112-114.
[13]
LI X, HUI D, LAI X. Battery energy storage station (bess)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations[J]. IEEE Transactions on Sustainable Energy, 2013, 4(2): 464-473.
[14]
谢石骁杨莉李丽娜. 基于机会约束规划的混合储能优化配置方法[J]. 电网技术2012, 36(5): 79-84.
XIE Shixiao, YANG Li, LI Lina, et al. A chance constrained programming based optimal configuration method of hybrid energy storage system[J]. 2012, 36(5): 79-84.
[15]
雷亚洲王伟胜印永华,等. 基于机会约束规划的风电穿透功率极限计算[J]. 中国电机工程学报. 2002. 22(5): 32-35.
LEI Yazhou, WANG Weisheng, YIN Yonghua, et al. Wind power penetration limit calculation based on chance contrained programming[J]. Proceedings of the CSEE, 2002. 22(5): 32-35.
[16]
赵国波刘天琪李兴源,等. 基于灰色机会约束规划的输电系统规划[J]. 电网技术2009, 33(1): 22-25.
ZHAO Guobo, LIU Tianqi, LI Xingyuan, et al. Power transmission system planning based on grey chance constrained programming[J]. Power System Technology, 2009, 33(1): 22-25.
[17]
杨宁文福栓. 基于机会约束规划的输电系统的规划方案[J]. 电力系统自动化2004, 28(14): 23-27.
YANG Ning, WEN Fushuan. Transmission system expansion planning based on chance constrained programming[J]. Automation of Electric Power Systems, 2004, 28(14): 23-27.
[18]
YUE Xiaofeng, SHAO Haihe. Fault diagnosis of rolling element bearing based on improved ensemble empirical mode decomposition[C]//Proceedings of International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou: IEEE, 2015: 52-55.

编辑: 蒋毅恒
PDF(1080 KB)

Accesses

Citation

Detail

段落导航
相关文章

/