基于拓扑结构与单元位置选择的微电网系统经济性分析

占晓友, 文水枭, 邵华

分布式能源 ›› 2016, Vol. 1 ›› Issue (3) : 49-54.

PDF(1378 KB)
PDF(1378 KB)
分布式能源 ›› 2016, Vol. 1 ›› Issue (3) : 49-54. DOI: 10.16513/j.cnki.10-1427/tk.2016.03.008

基于拓扑结构与单元位置选择的微电网系统经济性分析

作者信息 +

Economic Analysis of Microgrid System Based on Topological Structure and Unit Location

Author information +
文章历史 +

摘要

微电网技术因其能够高效环保地整合各种分布式发电(distributed generation, DG)单元并入大电网系统而得到越来越多的重视,同时微电网系统的推广应用必须要考虑经济性,其经济性评估取决于系统的成本。微电网系统成本包括了各DG单元的投资、运行、维护成本以及微电网系统的网损费用。该文重点针对网损费用,对比分析了3种具有代表性的拓扑结构,给出了基于拓扑结构与单元位置选择的微电网放置方案。利用MATPOWER仿真软件对微电网不同放置位置进行潮流计算分析,得出各种方案下系统网损费用。对比发现不同拓扑结构下的微电网系统所需的经济成本有所不同,而在同一拓扑结构下,DG单元放置位置不同,也会影响微电网系统的经济性分析。采用双电网并入式环状结构的微电网成本最低,辐射状拓扑结构的微电网成本最高。

Abstract

Microgrid technology has been increasingly concerned for its high efficiency and environmental integration of various distributed generation (DG) units into large power grid system. The wide application of micro-grid system should consider the economy, and the economic evaluation depends on the system cost. The cost of microgrid system covers the investment, operation and maintenance cost of all GD units, and the power losses of microgrid system. The power losses cost, especially for 3 typical topological structure, was compared to determine the microgrid layout solutions based on topological structure and unit location selection. MATPOWER simulation software was introduced to calculate the power flow in different location of microgrid to get the power loss cost. The results show that the economic cost of microgrid system depends on its topological structure; the location of DG units has effect on the economic analysis of the microgrid system for the same topological structure. The microgrid with dual-grid integrated ring structure is of the lowest cost, and that with radial topology is of the highest cost.

关键词

微电网 / 经济性 / 拓扑结构 / 单元放置位置 / 网损费用 / 双电网并入式

Key words

microgrid / economy / topological structure / unit location / power loss / dual power grid integration

引用本文

导出引用
占晓友, 文水枭, 邵华. 基于拓扑结构与单元位置选择的微电网系统经济性分析[J]. 分布式能源. 2016, 1(3): 49-54 https://doi.org/10.16513/j.cnki.10-1427/tk.2016.03.008
Xiaoyou ZHAN, Shuixiao WEN, Hua SHAO. Economic Analysis of Microgrid System Based on Topological Structure and Unit Location[J]. Distributed Energy Resources. 2016, 1(3): 49-54 https://doi.org/10.16513/j.cnki.10-1427/tk.2016.03.008
中图分类号:     

参考文献

[1]
CAISHENG W, NEHRIR M H. Power management of a standalone wind/photovoltatic/full cell energy system[J]. IEEE Transactions on Energy Conversion, 2008, 23(3): 957-967.
[2]
YU H S, TENG Z B, YU J P, et al. Energy-shaping and passivity based control of three-phase PWM rectifiers[C]//2012 10th World Congress on Intelligent Control and Automation(WCICA). Beijing, China: IEEE, 2012: 2844-2846.
[3]
SERRA F M, DE ANGELO C H, FOECHETTI D G. IDA-PBC control of a three-phase front-end converter[C]//IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society. Montreal, QC, Canada: IEEE, 2012: 5203-5208.
[4]
EROL-KANTARCI, MOUFTAH H T. Reliable overlay topology design for the smart microgrid network[C]//IECON 2011-12th Annual Conference on IEEE Industrial Electronics Society. Montreal, QC, Canada: IEEE, 2011: 3112-3116.
[5]
MOROZUMI S, KIKUCHI S, CHIBA Y, et al. Distribution technology development and demonstration projects in Japan[C]//Proceedings of Power & Energy Society General Meeting-Conversion & Delivery of Electrical Energy in the Century. Pittsburgh: IEEE, 2008.
[6]
LIU F C, LIU J J, ZHANG B. Energy management of hybrid energy storage system(HESS) based on sliding mode control[C]//2012 7th Intelnational Power Electronies and Motion Control conference(IPEMC). Harbin, China: IEEE, 2012: 406-410.
[7]
CECATI C, AQUILA A D, LECCI A, et al. Implementation issues of a fuzzy-logic-based three-phase active rectifier employing only voltage sensor[J]. IEEE Transactions on Industrial Electuonics, 2005, 52(2): 378-385.
[8]
LEE T S. Lagrangian modeling and passivity-based control of three-phase AC/DC voltage-source converters[J]. IEEE Transactions on Industrial Electronices, 2004, 51(4): 892-896.
[9]
BROWN R E, FREEMAN L A A. Analyzing the reliability impact of distributed generation[J]. IEEE Power Engineering Society Summer Meeting, 2002(1): 1013-1018.
[10]
LASSETER R H. Microgrids[C]//2002 IEEE Power Engineering Society Winter Meeting. New York, USA: IEEE, 2002: 305-308.
[11]
EROL-KANTARCI M, KANTARCI B, MOUFTAH H. Reliable overlay topology design for the smart microgrid network. Network[J]. Network IEEE, 2011, 25(5): 38-43.
[12]
王成山王守相. 分布式发电供能系统若干问题研究[J]. 电力系统自动化2008, 32(20): 1-4.
WANG Chengshan, WANG Shouxiang. Study on several problems of distributed generation energy system[J]. Automation of Electric Power Systems, 2008, 32(20): 1-4.
[13]
梁有伟胡志坚陈允平. 分布式发电及其在电力系统中的应用研究综述[J]. 电网技术2003, 27(12): 71-75.
LIANG Youwei, HU Zhijian, CHEN Yunping. Review of distributed generation and its application in power system[J]. Power System Technology, 2003, 27(12): 71-75.
[14]
王小君鲍海. 电力系统节点输电网损成本分析[J]. 中国电机工程学报2008, 28(13): 120-124.
WANG Xiaojun, BAO Hai. Analysis of transmission network losses in power system nodes[J]. Transactions of China Electrotechnical Society, 2008, 28(13): 120-124.
[15]
刘志鹏文福拴薛禹胜,等. 计及可入网电动汽车的分布式电源最优选址和定容[J]. 电力系统自动化2011, 35(18): 11-16.
LIU Zhipeng, WEN Fushuan, XUE Yusheng, et al. Optimal location and constant volume of distributed power supply considering grid-connected electric vehicle[J]. Automation of Electric Power Systems, 2011, 35(18): 11-16.

编辑: 蒋毅恒
PDF(1378 KB)

Accesses

Citation

Detail

段落导航
相关文章

/