我国能源系统形态演变及分布式能源发展

李立浧, 张勇军, 徐敏

分布式能源 ›› 2017, Vol. 2 ›› Issue (1) : 1-9.

PDF(2461 KB)
PDF(2461 KB)
分布式能源 ›› 2017, Vol. 2 ›› Issue (1) : 1-9. DOI: 10.16513/j.cnki.10-1427/tk.2017.01.001

我国能源系统形态演变及分布式能源发展

作者信息 +

Morphological Evolution of Energy System and Development of Distributed Energy in China

Author information +
文章历史 +

摘要

安全、高效、低碳是现代能源系统转型的主要目标。文章阐述了我国当前能源技术发展带来的新机遇,论述了我国能源系统转型的发展趋势,包括智能电网与能源网融合、能源供给模式由集中式向分布式转变等,分阶段提出了我国未来(包括2020年、2030年及2050年这3个阶段)能源系统的定位与形态演变,以及重点攻关技术方向。鉴于分布式能源在能源系统转型中的特殊地位,指出了适应能源系统形态演变规律的分布式能源发展路径和关键技术。

Abstract

Operation safely, effectively and with lower carbon emission is served as the main goal of the modern energy system transformation. The new opportunities brought by the energy system development are illustrated. The trend of energy system transformation in China, including the merger between smart grid and energy-net, the transformation of energy supply mode that shifts from centralized to distributed etc, is discussed. On this basis, the orientation, pattern evolution and key technology of our future energy system in 2020, 2030 and 2050 are proposed in this paper. Considering the importance of distributed energy in the energy system transformation, the development path and key technology of distributed energy that adjusted with the morphological evolution is also discussed.

关键词

能源系统 / 形态演变 / 智能电网 / 智慧能源 / 分布式能源

Key words

energy system / morphological evolution / smart grid / smart energy / distributed energy

引用本文

导出引用
李立浧, 张勇军, 徐敏. 我国能源系统形态演变及分布式能源发展[J]. 分布式能源. 2017, 2(1): 1-9 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.01.001
Licheng LI, Yongjun ZHANG, Min XU. Morphological Evolution of Energy System and Development of Distributed Energy in China[J]. Distributed Energy Resources. 2017, 2(1): 1-9 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.01.001
中图分类号:     

参考文献

[1]
ALDABAS M, GSTREIN M, TEUFEL S. Changing energy consumption behaviour: Individuals' responsibility and government role[J]. Journal of Electronic Science and Technology, 2015, 13(4):343-348.
[2]
KANG Chongqing. Guest editorial: Special issue on low-carbon electricity[J]. Journal of Modern Power Systems and Clean Energy, 2015, 3(1).
[3]
BP. BP世界能源统计年鉴2016[EB/OL].
[4]
国家发展和改革委员会. 中国应对气候变化的政策与行动2014 年度报告[EB/OL].
[5]
余晓丹徐宪东陈硕翼,等. 综合能源系统与能源互联网简述[J]. 电工技术学报2016, 31(1):1-13.
YU Xiaodan, XU Xiandong, CHEN Shuoyi, et al. A brief review to integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1):1-13.
[6]
田世明栾文鹏张东霞,等. 能源互联网技术形态与关键技术[J]. 中国电机工程学报2015, 35(14):3482-3494.
TIAN Shiming, LUAN Wenpeng, ZHANG Dongxia, et al. Technical forms and key technologies on energy internet[J]. Proceedings of the CSEE, 2015, 35(14):3482-3494.
[7]
王伟亮王丹贾宏杰,等. 能源互联网背景下的典型区域综合能源系统稳态分析研究综述[J]. 中国电机工程学报2016, 36(12):3292-3305.
WANG Weiliang, WANG Dan, JIA Hongjie, et al. Review of steady-state analysis of typical regional integrated energy system under the background of energy internet[J]. Proceedings of the CSEE, 2016, 36(12):3292-3305.
[8]
张勇军陈泽兴蔡泽祥,等. 新一代信息能源系统:能源互联网[J]. 电力自动化设备2016, 36(9):1-7.
ZHANG Yongjun, CHEN Zexing, CAI Zexiang, et al. New generation of cyber-energy system: Energy internet[J]. Electric Power Automation Equipment, 2016, 36(9):1-7.
[9]
RIFKIN J. The third industrial revolution: How lateral power is transforming energy, the economy, and the world[M]. New York: Palgrave MacMillan, 2011.
[10]
董朝阳赵俊华文福拴,等. 从智能电网到能源互联网:基本概念与研究框架[J]. 电力系统自动化2014, 38(15):1-11.
DONG Zhaoyang, ZHAO Junhua, WEN Fushuan, et al. From smart grid to energy internet: Basic concept and research framework[J]. Automation of Electric Power Systems, 2014, 38(15):1-11.
[11]
李立浧张勇军陈泽兴,等. 智能电网与能源网融合的模式及其发展前景[J]. 电力系统自动化2016, 40(11):1-9.
LI Licheng, ZHANG Yongjun, CHEN Zexing, et al. Merger between smart grid and energy-net: Mode and development prospects[J]. Automation of Electric Power Systems, 2016, 40(11):1-9.
[12]
MCDONALD J D. The next-generation grid [Guest Editorial][J]. IEEE Power & Energy Magazine, 2009, 7(2):26-94.
[13]
FADAEENEJAD M, SABERIAN A M, FADAEE M, et al.The present and future of smart power grid in developing countries[J]. Renewable & Amp; Sustainable Energy Reviews, 2014, 29(7):828-834.
[14]
杨庆新李永建. 先进电工磁性材料特性与应用发展研究综述[J]. 电工技术学报2016, 31(20):1-12.
YANG Qingxin, LI Yongjian. Characteristics and developments of advanced magnetic materials in electrical engineering: A review[J]. Transactions of China Electrotechnical Society, 2016, 31(20):1-12.
[15]
XIAO L Y, LIN L Z, DAI S T. The prospects of superconducting power technology under the background of new energy revolution[J]. Physics, 2011, 40:500-504.
[16]
XIN Y, GONG W Z, CUI J B, et al. Factory and field tests of a 220 kV/300 MVA statured iron-core superconducting fault current limiter[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3):5602305.
[17]
许广. 绝缘材料在智能电网中的应用现状[J]. 合成树脂及塑料2016, 33(5):85-87.
XU Guang. Application of insulating materials in smart grid[J]. China Synthetic Resin and Plastics, 2016, 33(5):85-87.
[18]
CHEN Y, WU X, QIAN Z. Analysis and design considerations of LLCC resonant DC-DC converter with precise current sharing for two-channel LED driver[J]. IEEE Energy Conversion Congress and Exposition (ECCE), 2011, 47(10):2771-2776.
[19]
LI Wuhua, HE Xiangning. Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications[J]. IEEE Transaction on Industry Electronics, 2011, 58(4):1239-1250.
[20]
张宁周天睿段长刚,等. 大规模风电场接入对电力系统调峰的影响[J]. 电网技术2010, 34(1):152-158.
ZHANG Ning, ZHOU Tianrui, DUAN Changgang, et al. Impact of large scale wind farm connecting with power grid on peak load regulation demand[J]. Power System Technology, 2010, 34(1):152-158.
[21]
刘文颖文晶谢昶,等. 考虑风电消纳的电力系统源荷协调多目标优化方法[J]. 中国电机工程学报2015, 35(5):1079-1088.
LIU Wenying, WEN Jing, XIE Chang, et al. Multi-objective optimal method considering wind power accommodation based source load coordination[J]. Proceedings of the CSEE, 2015, 35(5):1079-1088.
[22]
田晓翠董常龙杨正然,等. 天然气管输损耗分析与控制综述[J]. 当代化工2014, 43(7):1322-1325.
TIAN Xiaocui, DONG Changlong, YANG Zhengran, et al. Review of analysis and control for gas loss of pipeline[J]. Contemporary Chemical Industry, 2014, 43(7):1322-1325.
[23]
丛颖. 珲春市集中供热能耗与环境效益分析[D]. 吉林:吉林大学,2006.
CONG Ying. The energy consumption and the environment benefit analysis in the Hunchun county centralized heating[D]. Jilin: Jilin University, 2006.
[24]
葛春定刘建清. 国外氢能源经济研究简述[J]. 华东电力2012, 40(12):2142-2144.
GE Chunding, LIU Jianqing. Brief introduction of hydrogen economy of foreign countries[J]. East China Electric Power, 2012, 40(12):2142-2144.
[25]
韩晓平. 未来20年中国能源技术发展方向之一——分布式能源及相关技术[J]. 沈阳工程学院学报(自然科学版), 2005, 1(2-3):13-15.
HAN Xiaoping. One of development directions of Chinese energy technology in the next 20 years—Distributed energy and relevant technology[J]. Journal of Shenyang Institute of Engineering (Natural Science), 2005, 1(2-3):13-15.
[26]
肖刚张敏吉. 分布式能源技术解析[M]. 武汉:武汉大学出版社,2015.
[27]
张明锐王之馨黎娜,等. 下垂控制在基于固态变压器的高压微电网中的应用[J]. 电力系统自动化2012, 36(14):186-192.
ZHANG Mingrui, WANG Zhixin, LI Na, et.al. Application of droop control in high-voltage microgrid based on solid state transformer[J]. Automation of Electric Power Systems, 2012, 36(14):186-192.

基金

国家自然科学基金项目(51377060)

编辑: 蒋毅恒
PDF(2461 KB)

Accesses

Citation

Detail

段落导航
相关文章

/