改进多状态方法的冷热电联供系统多目标评估

曹芷健,刘继春,武云霞,刘俊勇,李斌,王冬,卢天琪

分布式能源 ›› 2017, Vol. 2 ›› Issue (1) : 10-15.

PDF(842 KB)
PDF(842 KB)
分布式能源 ›› 2017, Vol. 2 ›› Issue (1) : 10-15. DOI: 10.16513/j.cnki.10-1427/tk.2017.01.002

改进多状态方法的冷热电联供系统多目标评估

作者信息 +

Multi-Objective Evaluation of CCHP System With Improved Multi-State Method

Author information +
文章历史 +

摘要

冷热电联供系统(combined cooling heating and power, CCHP)与清洁能源的结合成为当前研究热点。将传统联供系统与太阳能相结合,充分利用可再生能源,在满足冷热电多重需求的同时提高了能源利用率和环境效益,以实现绿色经济可持续发展。为了研究冷热电联供系统风光出力不确定性的影响,采用改进的基于Wasserstein概率距离指标多状态方法建模。从经济、能源、环保这3个方面对系统配置进行优化,选择投运成本、一次能源消耗量和当量CO2排放量为目标对系统进行配置评估,并采用模糊层次分析法对多目标进行求解。结果表明该文所提出的优化方法在多目标评估中是有效的,同时对比CCHP与分供系统(separation production,SP)的优化结果,证明了CCHP在经济、能源与环保方面较传统SP具有一定优势。

Abstract

The combination of combined cooling heating and power(CCHP)and clean energy is considered as a hot research topic. In this paper, the traditional combined supply system and solar energy are combined to make full use of renewable energy to meet the multiple needs of hot and cold while improving energy efficiency and environmental benefits to achieve sustainable development of green economy. In order to study the influence of uncertainty on the wind power output of CCHP system, an improved Wasserstein multi-state model based on the probability distance index was proposed. The system configuration is optimized from the aspects of economy, energy and environment. The system configuration is evaluated by selecting the cost, the primary energy consumption and the equivalent CO2 emission. The fuzzy analytic hierarchy process is used to solve the multi-objective. The results show that the optimization method proposed in this paper is effective in multi-objective evaluation. Compare with the optimization results of SP, CCHP has advantages in economy, energy and environmental protection.

关键词

不确定性 / Wasserstein概率距离指标 / 模糊层次分析法 / 多目标评估

Key words

uncertainty / Wasserstein probability distance index / fuzzy analytic hierarchy process / multi-objective evaluation

引用本文

导出引用
曹芷健, 刘继春, 武云霞, . 改进多状态方法的冷热电联供系统多目标评估[J]. 分布式能源. 2017, 2(1): 10-15 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.01.002
Zhijian CAO, Jicun LIU, Yunxia WU, et al. Multi-Objective Evaluation of CCHP System With Improved Multi-State Method[J]. Distributed Energy Resources. 2017, 2(1): 10-15 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.01.002

参考文献

[1]
张小晖陈钟颀. 热电冷联产系统的能耗特性[J]. 中国电机工程学报2007, 27(5):93-98.
ZHANG Xiaohui, CHEN Zhongqi. Energy consumption performance of combined heat cooling and power system[J]. Proceedings of the CSEE, 2007, 27(5):93-98.
[2]
李赟黄兴华. 冷热电三联供系统配置与运行策略的优化[J]. 动力工程2006, 26(6):894-898.
LI Yun, HUANG Xinghua. Integrated optimization of schemeand operation strategy for CCHP system[J]. Journal of Power Engineering, 200626(6):894-898.
[3]
刘小军李进曲勇. 冷热电联供(CCHP)分布式能源系统建模综述 [J]. 电网与清洁能源2012, 28(7):69-74.
LIU Xiaojun, LI Jin, QU Yong. Overview of modeling of combined cooling heating and power system[J]. Power System and Clean Energy, 2012, 28(7):69-74.
[4]
荆有印白鹤张建良. 太阳能冷热电联供系统的多目标优化设计与运行策略分析[J]. 中国电机工程学报2012, 32(20):82-87.
JING Youyin, BAI He, ZHANG Jianliang. Multi-objective optimization design and operation stategy analysis of a solar combined cooling heating and power system[J]. Proceedings of the CSEE, 2012, 32(20):82-87.
[5]
赵峰张承慧孙波. 冷热电联供系统的三级协同整体优化设计方法[J]. 中国电机工程学报2015, 35(15):3785-3793.
ZHAO Feng, ZHANG Chenghui, SUN Bo. Three-stage collaborative global optimization design method of combined cooling heating and power[J]. Proceedings of the CSEE, 2015, 35(15):3785-3793.
[6]
王群董文略杨莉. 基于Wasserstein距离和改进K-medoids聚类的风电/光伏经典场景集生成算法[J]. 中国电机工程学报2015, 35(11):2654-2661.
WANG Qun, DONG Wenlue, YANG Li. A wind power/photovoltaic typical scenario set generation algorithm based on wasserstein distance mertric and revised K-medoids cluster[J]. Proceedings of the CSEE, 2015, 35(11):2654-2661.

基金

国家高技术发展研究计划项目(863计划)(2014AA051901)

编辑: 蒋毅恒
PDF(842 KB)

Accesses

Citation

Detail

段落导航
相关文章

/