多级热源利用型温差发电系统的流场与温度场优化设计

许昊煜

分布式能源 ›› 2017, Vol. 2 ›› Issue (1) : 44-49.

PDF(8760 KB)
PDF(8760 KB)
分布式能源 ›› 2017, Vol. 2 ›› Issue (1) : 44-49. DOI: 10.16513/j.cnki.10-1427/tk.2017.01.007

多级热源利用型温差发电系统的流场与温度场优化设计

作者信息 +

Flow Field and Temperature Field Optimization Study on Design of a Multi-Level Heat Source Utilization Thermoelectric Generation System

Author information +
文章历史 +

摘要

为了进一步提高温差发电系统的热电转换效率,从而提升其在分布式能源中的适用性,针对一种典型多级热源利用型温差发电系统,采用数值计算方法研究了不同燃烧器结构对系统的流场、温度场以及发电性能的影响,并提出了燃烧器结构的优化方案。模拟结果验证了系统级优化方案的合理性和可行性,优化后系统的流场和温度场得到较大的改善,热电模块的温度有较大提高且分布更为均匀,输出功率和发电效率提升显著。

Abstract

In order to increase the efficiency and applicability of thermoelectric generation (TEG) system in distributed energy, with the framework of numerical calculation, an optimized scheme of burner is proposed to study the influence of burner structure on flow field,temperature field and the generation performance of a typical multi-level heat source utilization TEG system. The simulative results prove the rationality and feasibility of the proposed optimization method,which indicate that the flow field and the temperature field are optimized, the temperature uniformity of the thermoelectric modules, the output power and efficiency of the system are improved.

关键词

分布式能源 / 温差发电 / 热源利用 / 流场优化 / 系统效率

Key words

distributed energy sources / thermoelectric generation;heat source utilization / flow field optimization / system efficiency

引用本文

导出引用
许昊煜. 多级热源利用型温差发电系统的流场与温度场优化设计[J]. 分布式能源. 2017, 2(1): 44-49 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.01.007
Haoyu XU. Flow Field and Temperature Field Optimization Study on Design of a Multi-Level Heat Source Utilization Thermoelectric Generation System[J]. Distributed Energy Resources. 2017, 2(1): 44-49 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.01.007

参考文献

[1]
TOBERER E. Thermoelectric phenomena, materials, devices, and applications[C]//APS March Meeting 2013. Baltimore, Maryland: APS, 2013, 58(1): 23-29.
[2]
BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895):1457-1461.
[3]
赵建云朱冬生周泽广,等. 温差发电技术的研究进展及现状[J]. 电源技术2010, 34(3):310-313.
ZHAO Jianyun, ZHU Dongsheng, ZHOU Zeguang, et al. Research progress of thermoelectric power generation[J]. Chinese Journal of Power Sources, 2010, 34(3):310-313.
[4]
BISWAS K, HE J, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures[J]. Nature, 2012, 489(7416):414-418.
[5]
张丽鹏于先进肖晓明. 热电材料的研究进展[J]. 现代技术陶瓷2006, 30(3):20-25.
ZHANG Lipeng, YU Xianjin, XIAO Xiaoming. Development of thermoelectric materials[J]. Advanced Ceramics, 2006, 27(3):20-25.
[6]
尹跃超杨国梁马浩原,等. 热电薄膜材料研究进展综述[J]. 广东化工2016, 43(12):90-91.
[7]
石玥高方圆董国波,等. 新型高效热电材料研究进展[C]//全国青年材料科学技术研讨会,2013.
[8]
褚泽苟小龙肖恒. 二级半导体温差发电器性能优化分析[J]. 计算机仿真2009, 26(10):274-278.
CHU Ze, GOU Xiaolong, XIAO Heng. Performance optimization analysis of two-stage semiconductor thermoelectric-generator[J]. Computer Simulation, 2009, 26(10):274-278.
[9]
平会峰. 高温温差发电系统的性能分析[D]. 重庆:重庆大学,2015.
PING Huifeng. Performance analysis on a high temperature thermoelectric generation system[D]. Chongqing: Chongqing University, 2015.
[10]
GOU X, XIAO H, YANG S. Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system[J]. Applied Energy, 2010, 87(10):3131-3136.
[11]
KWAN T H, WU X. Power and mass optimization of the hybrid solar panel and thermoelectric generators[J]. Applied Energy, 2016, 165:297-307.
[12]
STEVENS J W. Optimal design of small ΔT thermoelectric generation systems[J]. Energy Conversion & Management, 2001, 42(6):709-720.
[13]
ESARTE J, MIN G, ROWE D M. Modelling heat exchangers for thermoelectric generators[J]. Journal of Power Sources, 2001, 93(1):72-76.
[14]
CRANE D T, JACKSON G S. Optimization of cross flow heat exchangers for thermoelectric waste heat recovery[J]. Energy Conversion & Management, 2004, 45(9-10):1565-1582.
[15]
张华俊陈浩王俊,等. 冷、热端温度对半导体热电堆发电性能影响的初步研究[J]. 太阳能学报2001, 22(2):148-152.
ZHANG Huajun, CHEN Hao, WANG Jun, et al. A primary research on generation performance of the semiconductor thermoelectric module under variable cold-side and hot-side temperature[J]. ActaEnergiae Solaris Sinica, 2001, 22(2):148-152.
[16]
QIU K, HAYDEN A C S. Development of a thermoelectric self-powered residential heating system[J]. Journal of Power Sources, 2008, 180(2):884-889.
[17]
许昊煜. 一种热能梯级利用型温差发电系统的优化设计[J]. 分布式能源2016, 1(1):57-64.
XU Haoyu. Optimization design of a cascading thermoelectric generation system[J]. Distributed Energy, 2016, 1(1):57-64.

编辑: 蒋毅恒
PDF(8760 KB)

Accesses

Citation

Detail

段落导航
相关文章

/