基于电压调差率的风电场并列运行静止无功补偿装置协调控制

于永军,祁晓笑,郑少鹏,王方楠

分布式能源 ›› 2017, Vol. 2 ›› Issue (2) : 51-56.

PDF(2019 KB)
PDF(2019 KB)
分布式能源 ›› 2017, Vol. 2 ›› Issue (2) : 51-56. DOI: 10.16513/j.cnki.10-1427/tk.2017.02.008

基于电压调差率的风电场并列运行静止无功补偿装置协调控制

作者信息 +

Static Var Compensation Devices Coordination Control in Parallel Operation of Wind Farm Based on Voltage Adjustment Coefficient

Author information +
文章历史 +

摘要

目前风电场并列运行无功补偿装置间的出力分配依赖于电压协调控制系统,在协调控制器通讯故障时整个风电场的电压稳定大幅降低。借鉴机组励磁系统电压调差的整定原则,将设定的调差系数引入到风电场静止无功补偿装置控制环节,从而实现多套装置间的配合协同来提高电压稳定性。通过仿真分析和现场试验均验证了调差的整定对协调控制能力的效果显著,可以实现装置的稳定运行和快速调节。该技术不但解决了风电场多套无功装置的协调配合,也大幅减少了风电场设备投资,提高了经济效益。

Abstract

Now in wind farm, the load distribution of reactive power compensation devices in parallel operation relys on voltage coordination control system. When the communications among coordination controllers fail, the voltage stability of wind power station is greatly reduced. According to the setting principle of voltage adjustment in excitation system of generator unit, the adjustment coefficient setting is applied to the controlling unit of static var compensator devices in wind farm to achieve the coordination among multiple devices and thus increase the voltage stability. Simulation analysis and field test both verify that the adjustment coefficient has obvious and remarkable effect on coordination control, and can achieve stable operation and quick adjustment of devices. The technology not only can achieve coordination among multiple reactive power devices of wind farm but also can greatly reduce equipment investment and increase economic benefit.

关键词

风电场 / 静止无功补偿装置 / 调差系数 / 电压控制

Key words

wind farm / static var compensator / adiustment coefficient / voltage control

引用本文

导出引用
于永军, 祁晓笑, 郑少鹏, . 基于电压调差率的风电场并列运行静止无功补偿装置协调控制[J]. 分布式能源. 2017, 2(2): 51-56 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.02.008
Yongjun YU, Xiaoxiao QI, Shaopeng ZHENG, et al. Static Var Compensation Devices Coordination Control in Parallel Operation of Wind Farm Based on Voltage Adjustment Coefficient[J]. Distributed Energy Resources. 2017, 2(2): 51-56 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.02.008

参考文献

[1]
陈新亮张大庆. 基于PI控制方法的SVC电压负反馈控制策略[J]. 研究与设计2012, 8(8): 35-39.
[2]
张艳萍张建华刘自发. 静止无功补偿器改进U-I特性控制[J]. 电力自动化设备2008, 28(5): 38-41.
ZHANG Yanping, ZHANG Jianhua, LIU Zifa. Improved U-I characteristic for SVC[J]. Electric Power Automation Equipment, 2008, 28(5): 38-41.
[3]
张蕊孙丽颖. SVC时滞系统的Backstepping控制[J]. 辽宁工业大学学报2012, 32(1): 17-21.
[4]
钱珞江王建安. 基于RTDS的SVC变调差率控制仿真研究[J]. 电力系统控制与保护2011, 39(10): 1-4.
QIAN Luojiang, WANG Jian'an. Simulation study for SVC with changeable regulation slope control based on RTDS[J]. Power System Protection and Control, 2011, 39(10): 1-4.
[5]
姚伟文劲宇程时杰,等. 考虑时滞影响的SVC广域附加阻尼控制器设计[J]. 电工技术学报2012, 27(3): 239-246.
YAO Wei, WEN Jinyu, CHENG Shijie, et al. Design of wide-area supplementary damping controller of SVC considering time delays[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 239-246.
[6]
何中昌宗伟范婷霞. SVC对河南电网电压稳定性影响的仿真分析[J]. 现代电力2012, 29(6): 23-26.
HE Zhongchang, ZONG Wei, FAN Tingxia. Simulation and analysis on the effect of SVC on the transient stability of Henan power grid[J]. Modern Electric Power, 2012, 29(6): 23-26.
[7]
龚乐年. 电压调差率与调差装置[J]. 河北电力技术1987, 1(3): 1-9.
[8]
周晓华王荔芳. 基于改进型非线性度变换PI的SVC电压控制[J]. 科学技术与工程2012, 12(29): 7736-7739.
[9]
郭利娜刘天琪李兴源,等. SVC基本控制和附加控制对交直流系统电压特性的影响[J]. 华东电力201240(11): 1956-1960.
GUO Lina, LIU Tianqi, LI Xingyuan, et al. Influence of SVC basic and additional control on AC/DC system voltage characteristics[J]. East China Electric Power, 2012, 40(11): 1956-1960.

编辑: 谷子
PDF(2019 KB)

Accesses

Citation

Detail

段落导航
相关文章

/