考虑低碳效益的混合能源微电网优化调度

靳现林,蔡晓宇

分布式能源 ›› 2017, Vol. 2 ›› Issue (3) : 26-32.

PDF(1167 KB)
PDF(1167 KB)
分布式能源 ›› 2017, Vol. 2 ›› Issue (3) : 26-32. DOI: 10.16513/j.cnki.10-1427/tk.2017.03.005
学术研究

考虑低碳效益的混合能源微电网优化调度

作者信息 +

Hybrid Energy Micro Grid Optimal Scheduling Considering Low-Carbon Benefits

Author information +
文章历史 +

摘要

In recent years, micro grid technology including renewable energy generation has been developed rapidly. According to the problem that the energy efficiency of micro grids containing multiple new energy sources and new loads is low, this paper focuses on the optimal scheduling of hybrid energy micro grid, and considers the demand response and low-carbon benefits in the optimal scheduling model. In the optimization process, we take the microgrid which contains photovoltaic (PV), wind power, combined heat and power (CHP) and electric vehicles (EV) as the object of study, and construct the output models for each resource. The objective function aims to minimize the total cost including gas cost, operation and maintenance cost, electric power purchase from the main grid, depreciation charge for micro power and cost of carbon dioxide emission. Under the constraint conditions, we adopt the improved firefly algorithm (FA) to solve the objective function. With case study, we calculate the total operation cost of micro grid under different scenarios, analyze the low carbon benefits of each scheme, and seek the balance between economy and low carbon to obtain the optimal operation scheme of micro grid.

关键词

微电网 / 优化调度 / 混合能源 / 低碳效益 / 需求侧管理 / micro grid / optimal scheduling / hybrid energy / low-carbon benefits / demand side management

引用本文

导出引用
靳现林, 蔡晓宇, JIN Xianlin, . Hybrid Energy Micro Grid Optimal Scheduling Considering Low-Carbon Benefits[J]. 分布式能源. 2017, 2(3): 26-32 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.03.005
[J]. Distributed Energy Resources. 2017, 2(3): 26-32 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.03.005

参考文献

[1]
吴雄王秀丽别朝红,等. 含热电联供系统的微网经济运行[J]. 电力自动化设备2013, 33(8): 1-6.
WU Xiong, WANG Xiuli, BIE Zhaohong,et al. Economic operation of micro grid with combined heat and power system[J]. Electric Power Automation Equipment, 2013, 33(8): 1-6.
[2]
王锐顾伟吴志. 含可再生能源的热电联供型微网经济运行优化[J]. 电力系统自动化2011, 35(8): 22-27.
WANG Rui, GU Wei, WU Zhi. Economic and optimal operation of a combined heat and power microgrid with renewable energy resources[J]. Automation of Electric Power Systems, 2011, 35(8): 22-27.
[3]
李锋赵玺灵付林. 燃气轮机热电联供系统性能评估案例[J]. 热能动力工程2010, 25(1): 34-38, 119-120.
LI Feng, ZHAO Xiling, FU Lin. Performance evaluation case of a gas turbine-based heat-and-power cogeneration system[J]. Journal of Engineering for Thermal Energy and Power201025(1): 34-38, 119-120.
[4]
丁宁吴军基邹云. 基于DSM的峰谷时段划分及分时电价研究[J]. 电力系统自动化2001, 25(23): 9-12, 16.
DING Ning, WU Junji, ZOU Yun. Research of peak and valley time period partition approach and tou price on DSM[J]. Automation of Electric Power Systems2001, 25(23): 9-12, 16.
[5]
马玲玲杨军付聪,等. 电动汽车充放电对电网影响研究综述[J]. 电力系统保护与控制2013, 41(3): 140-148.
MA Lingling, YANG Jun, FU Cong, et al. Review on impact of electric car charging and discharging on power grid[J]. Power System Protection and Control, 2013, 41(3): 140-148.
[6]
项顶宋永华胡泽春,等. 电动汽车参与V2G的最优峰谷电价研究[J]. 中国电机工程学报2013, 33(31): 15-25, 2.
XIANG Ding, SONG Yonghua, HU Zechun, et al. Research on optimal time of use price for electric vehicle participating V2G[J]. Proceedings of the CSEE, 2013, 33(31): 15-25, 2.
[7]
黄伟黄婷周欢,等. 基于改进微分进化算法的微电网动态经济优化调度[J]. 电力系统自动化2014, 38(9): 211-217.
HUANG Wei, HUANG Ting, ZHOU Huan, et al. Dynamic economical dispatch for microgrid based on improved differential evolution algorithm[J]. Automation of Electric Power Systems, 2014, 38(9): 211-217.
[8]
洪博文郭力王成山,等. 微电网多目标动态优化调度模型与方法[J]. 电力自动化设备2013, 33(3): 100-107.
HONG Bowen, GUO Li, WANG Chengshan, et al. Model and method of dynamic multi-objective optimal dispatch for microgrid[J]. Electric Power Automation Equipment, 2013, 33(3): 100-107.
[9]
杨毅雷霞叶涛,等. 考虑安全性与可靠性的微电网电能优化调度[J]. 中国电机工程学报2014, 34(19): 3080-3088.
YANG Yi, LEI Xia, YE Tao, et al. Microgrid energy optimal dispatch considering the security and reliability[J]. Proceeding of the CSEE, 2014, 34(19): 3080-3088.
[10]
顾伟吴志王锐. 考虑污染气体排放的热电联供型微电网多目标运行优化[J]. 电力系统自动化2012, 36(14): 177-185.
GU Wei, WU Zhi, WANG Rui. Multi-objective optimization of combined heat and power microgrid considering pollutant emission[J]. Automation of Electric Power Systems, 2012, 36(14): 177-185.
[11]
徐业琰彭思成廖清芬,等. 考虑用户互补聚合响应与热能传输延时的综合能源园区运营商两阶段短期优化调度[J]. 电力自动化设备2017, 37(6): 1-11.
XU Yeyan, PENG Sicheng, LIAO Qinfen, et al. Two-stage short-term optimal dispatch of MEP considering CAUR and HTTD[J]. Electric Power Automation Equipment, 2017, 37(6): 1-11.
[12]
白牧可唐巍吴聪,等. 基于热网电网综合潮流的用户侧微型能源站及接入网络优化规划[J]. 电力自动化设备2017, 37(6): 1-9.
BAI Muke, TANG Wei, WU Cong, et al. Optimal planning based on integrated thermal-electric power flow for user-side micro energy station and its integrating network[J]. Electric Power Automation Equipment, 2017, 37(6): 1-9.
[13]
LIU Z, CHEN C, YUAN J. Hybrid energy scheduling in a renewable micro grid[J]. Applied Sciences, 2015, 5(3): 516-531.
[14]
朱兰杨秀符杨. 含微型燃气轮机的微电网系统的优化规划研究[J]. 华东电力2011, 39(12): 2037-2040.
ZHU Lan, YANG Xiu, FU Yang. Optimal plan and design for microgrid including microturbine[J]. East China Electric Power, 2011, 39(12): 2037-2040.
[15]
帅暘冯丽祁佳,等. 萤火虫算法的图像边缘检测[J]. 通信技术2015(8): 913-917.
SHUAI Yang, FENG Li, QI Jia, et al. Image edge detection of glowworm swarm algorithm[J]. Communications Technology, 2015(8): 913-917.
[16]
骆东松李雄伟赵小强. 基于人工萤火虫的模糊聚类算法研究[J]. 工业仪表与自动化装置2013(2): 3-6.
LUO Dongsong, LI Xiongwei, ZHAO Xiaoqiang. Research on fuzzy clustering algorithm based on GSO[J]. Industrial Instrumentation & Automation, 2013(2): 3-6.
[17]
刘翠苹张海涛白舸. 基于萤火虫群优化算法的无线传感器节点部署[J]. 计算机应用2013, 33(4): 905-907.
LIU Cuiping, ZHANG Haitao, BAI Ge. Node deployment of wireless sensor network based on glowworm swarm optimization algorithm[J]. Journal of Computer Applications, 2013, 33(4): 905-907.
[18]
王晶王宗礼陈骏宇,等. 基于萤火虫优化算法的微网源荷博弈模型及分析[J]. 电力系统自动化2014, 38(21): 7-12.
WANG Jing, WANG Zongli, CHEN Junyu, et al. A game model for dgs-loads in microgrid based on firefly algorithm and its analysis[J]. Automation of Electric Power Systems, 2014, 38(21): 7-12.
[19]
徐兢浩. 基于改进萤火虫算法的变电站选址定容研究[D]. 北京:华北电力大学,2016.
XU Jinghao. Research on substation locating and sizing based on improved firefly algorithm[D]. Beijing: North China Electric Power University, 2016.

编辑: 蒋毅恒
PDF(1167 KB)

Accesses

Citation

Detail

段落导航
相关文章

/