导流隔板式相变储热单元性能强化的模拟

马林

分布式能源 ›› 2017, Vol. 2 ›› Issue (3) : 39-44.

PDF(2908 KB)
PDF(2908 KB)
分布式能源 ›› 2017, Vol. 2 ›› Issue (3) : 39-44. DOI: 10.16513/j.cnki.10-1427/tk.2017.03.007
应用技术

导流隔板式相变储热单元性能强化的模拟

作者信息 +

Numerical Simulation on Performance Enhancement of Lead-Flow Partition Phase Change Heat Storage Unit

Author information +
文章历史 +

摘要

The traditional heat storage unit based on phase change material (PCM) adopts the simple inner and outer casing structure of which the heat transfer performance is limited due to the uneven distribution of the solid-liquid interface. Therefor, this paper proposes two new types of horizontal and inclined lead-flow partition casings, establishes three different mathematical and physical models of casings, simulates the transition process by two dimensional unsteady state, compares the differences of heat transfer performance between these three structures and analyzes the factors affecting the heat transfer performance of the lead-flow partition. Compared with the traditional structure, the PCM melting time has been reduced by 40.2% by horizontal lead-flow partition and 65% by inclined lead-flow partition. The results show that the lead-flow partition can effectively weaken the uneven distribution of the solid-liquid interface and shorten the PCM melting time, and the heat transfer performance of the casing can be further improved by adjusting the number and inclination of partitions.

关键词

导流隔板 / 相变材料 / 储热单元 / 套管 / lead-flow partition / phase change material / heat storage unit / casing

引用本文

导出引用
马林, MA Lin. Numerical Simulation on Performance Enhancement of Lead-Flow Partition Phase Change Heat Storage Unit[J]. 分布式能源. 2017, 2(3): 39-44 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.03.007
[J]. Distributed Energy Resources. 2017, 2(3): 39-44 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.03.007

参考文献

[1]
金红光隋军. 变革性能源利用技术——分布式能源系统[J]. 分布式能源2016, 1(1): 1-5.
JIN Hongguang, SUI Jun. Transformational technology innovation-distributed energy system[J]. Distributed Energy, 2016, 1(1): 1-5.
[2]
慈松李宏佳陈鑫,等. 能源互联网重要基础支撑: 分布式储能技术的探索与实践[J]. 中国科学: 信息科学2014, 44(6): 762-773.
CI Song, LI Hongjia, CHEN Xin, et al. The cornerstone of energy internet: Research and practice of distributed energy storage technology[J]. Science China: Information Science, 2014, 44(6): 762-773.
[3]
严俊赵立飞. 储能技术在分布式发电中的应用[J]. 华北电力技术2006, 36(10): 16-19.
YAN Jun, ZHAO Lifei. Energy storage for distributed generation[J]. North China Electric Power, 2006, 36(10): 16-19.
[4]
张永信李舒宏操恺,等. 太阳能相变储能水箱释能性能的数值模拟[J]. 储能科学与技术2013, 2(4): 377-382.
ZHANG Yongxin, LI Shuhong, CAO Kai, et al. Numerical analysis of the discharging performance of a solar energy storage tank containing PCM modules[J]. Energy Storage Science and Technology, 2013, 2(4): 377-382.
[5]
吴斌邢玉明. 适用于废热回收的相变蓄热装置数值模拟与实验研究[J]. 热能动力工程2011, 26(1): 53-57.
WU Bin, XING Yuming. Numerical simulation and experimental study of a phase change heat accumulation device applicable for waste heat recovery[J]. Journal of Engineering for Thermal Energy & Power, 2011, 26(1): 53-57.
[6]
廖百胜. 套管式换热器结构变化对换热能力影响的模拟研究[J]. 制冷与空调2010, 24(1): 40-44.
LIAO Baisheng. Simulation research of impact of heat exchanger capacity of heat exchanger casing's structural changes[J]. Refrigeration and Air Conditioning, 2010, 24(1): 40-44.
[7]
杨佳霖杜小泽杨立军,等. 泡沫金属强化石蜡相变蓄热过程可视化实验[J]. 化工学报2015, 66(2): 497-503.
YANG Jialin, DU Xiaoze, YANG Lijun, et al. Visualized experiment on dynamic thermal behavior of phase change material in metal foam[J]. CIESC Journal, 2015, 66(2): 497-503.
[8]
徐明. 相变蓄热换热器的数值模拟及优化设计[D]. 西安:西安建筑科技大学,2015.
XU Ming. Numerical simulation and optimization of phase change thermal storage exchanger[D]. Xi'an: Xi'an University of Architecture and Technology, 2015.
[9]
贺鹏. 具有相变蓄热体的蓄热换热器研究[D]. 广州:华南理工大学,2013.
HE Peng. Regenerative heat exchanger with phase change of the regenerator [D]. Guangzhou:South China University of Technology, 2013.
[10]
陈佳冯毅. 翅片缩放管相变蓄热体热工特性数值模拟[J]. 压力容器201330(8): 38-45.
CHEN Jia, FENG Yi. Numerical simulation on thermal characteristics of fin converging-diverging channel regenerator with phase change materials[J]. Journal of Pressure Vessels, 2013, 30(8): 38-45.
[11]
王亮. 套管式蓄热器热性能数值模拟及实验研究[D]. 石家庄:河北科技大学,2012.
WANG Liang. Numerical simulation and experimental study on thermal performance of multi tube heat storage[D]. Shijiazhuang: University Of Science and Technology Of Hebei, 2012.
[12]
邹得球肖睿宋文吉,等. 一种余热利用相变石蜡储热过程的数值模拟[J]. 热能动力工程2010, 25(1): 77-81.
ZOU Deqiu, XIAO Rui, SONG Wenji, et al. Numerical simulation of the heat storage process of a waste heat utilization-oriented phase-change paraffin[J]. Journal of Engineering for Thermal Energy & Power, 2010, 25(1): 77-81.
[13]
韩广顺丁红胜王培伦,等. 偏心管翅式相变储热单元性能强化的模拟[J]. 节能技术2015, 33(6): 483-488.
HAN Guangshun, DING Hongsheng, WANG Peilun, et al. Numerical simulation on performance enhancement of eccentric fin-tube latent heat storage unit[J]. Energy Conservation Technology, 2015, 33(6): 483-488.
[14]
王哲斌许淑惠严颖. 石蜡相变蓄热过程数值模拟[J]. 北京建筑工程学院学报2008, 24(2): 15-18.
WANG Zhebin, XU Shuhui, YAN Ying. Simulation of the heat transfer of melting process of paraffin[J]. Journal of Beijing University of Civil Engineering and Architecture, 2008, 24(2): 15-18.
[15]
周园. 相变材料的蓄/放热性能研究[D].上海:上海交通大学,2009.
ZHOU Yuan. The research of accumulation/release of heat phase change material[D]. Shanghai: Shanghai Jiao Tong University, 2009.

编辑: 蒋毅恒
PDF(2908 KB)

Accesses

Citation

Detail

段落导航
相关文章

/