垂直轴潮流能水轮机设计及水动力性能分析

邹淑云,黄杨成,刘忠

分布式能源 ›› 2017, Vol. 2 ›› Issue (6) : 21-25.

PDF(1524 KB)
PDF(1524 KB)
分布式能源 ›› 2017, Vol. 2 ›› Issue (6) : 21-25. DOI: 10.16513/j.cnki.10-1427/tk.2017.06.004

垂直轴潮流能水轮机设计及水动力性能分析

作者信息 +

Design and Hydrodynamic Performance Analysis of Vertical Axis Tidal Current Turbines

Author information +
文章历史 +

摘要

To compare the hydrodynamic performance of vertical axis tidal current turbines with different structures, this paper designed the structural parameters of three-blade single-row-vane type and six-blade double-row-vane type vertical axis turbines. We analyzed the 2D low fields of single-row-vane type and double-row-vane type vertical axis tidal current turbines under special rotation angle by using CFD software, and compared the pressure cloud diagram and velocity field diagram. The results show that the resultant pressure of the blade of double-row-vane type hydro turbine is greater than that of single-row-vane type at the design flow rate 2.5 m/s. The self-starting performance of double-row-vane type hydro turbine is better than that of single-row-vane type. But blades in double-row-vane type turbine will introduce flow field interference when the rotation angle of the axis is 0 and 60 degrees. And disjointed and disordered wake flows arise on the blades of double-row-vane type turbine when the rotation angle of the axis is 30 and 90 degrees.

关键词

潮流能 / 垂直轴水轮机 / 自启动性能 / 单列叶片式 / 双列叶片式 / tidal current energy / vertical axis hydro turbine / self-starting performance / single-row-vane type / double-row-vane type

引用本文

导出引用
邹淑云, 黄杨成, 刘忠, . Design and Hydrodynamic Performance Analysis of Vertical Axis Tidal Current Turbines[J]. 分布式能源. 2017, 2(6): 21-25 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.06.004
[J]. Distributed Energy Resources. 2017, 2(6): 21-25 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.06.004

参考文献

[1]
崔琳. 座底式水平轴潮流能转换装置设计研究[D]. 哈尔滨:哈尔滨工程大学,2012.
CUI Lin. Study on gravitational horizontal axis conversion device design of tidal current energy[D]. Harbin: Harbin Engineering University, 2012.
[2]
张亮李志川张学伟,等. 垂直轴潮流能水轮机研究与利用现状[J]. 应用能源技术2011(9): 1-7.
ZHANG Liang, LI Zhichuan, ZHANG Xuewei, et al. The status of research and application of vertical axis tidal turbine[J]. Applied Energy Technology, 2011(9): 1-7.
[3]
李凤来姜得志孟巧. 竖轴固定直叶片潮流水轮机自启动性能研究[J]. 工程与试验2011, 51(3): 23-26, 76.
LI Fenglai, JIANG Dezhi, MENG Qiao. Study on the self-starting performance of the fixed straight-bladed vertical axis tidal turbine[J]. Engineering & Test, 2011, 51(3): 23-26, 76.
[4]
王世明任万超吕超. 海洋潮流能发电装置综述[J]. 海洋通报2016, 35(6): 601-608.
WANG Shiming, REN Wanchao, LYU Chao. Review of the tidal current energy device[J]. Marine Science Bulletin, 2016, 35(6): 601-608.
[5]
张鹏坤李晔. 三叶片垂直轴水轮机结构动力响应分析[J]. 应用数学和力学2017, 38(6): 663-675.
ZHANG Pengkun, LI Ye. Investigation on structural dynamic responses of vertical-axis tidal current turbines[J]. Applied Mathematics and Mechanics, 2017, 38(6): 663-675.
[6]
盛其虎周念福张学伟,等. 二维垂直轴水轮机强迫振荡水动力性能分析[J]. 哈尔滨工程大学学报2015, 36(1): 41-45.
SHENG Qihu, ZHOU Nianfu, ZHANG Xuewei, et al. Hydrodynamic performance analysis of a 2D vertical current turbine with forced oscillation[J]. Journal of Harbin Engineering University, 2015, 36(1): 41-45.
[7]
何中伟郑源梁晓玲,等. 新型H型叶片潮流能水轮机不同翼型水动力性能分析[J]. 水利水电技术2016, 47(10): 45-49.
HE Zhongwei, ZHENG Yuan, LIANG Xiaoling, et al. Analysis on hydrodynamic performances of different airfoils for new H-type blade of tidal current energy turbine[J]. Water Resources and HydropowerEngineering, 2016, 47(10): 45-49.
[8]
刘培检. 垂直轴水轮机水动力性能的数值模拟研究[D]. 广州:华南理工大学,2013.
LIU Peijian. Numerical simulation on hydrodynamic performances of vertical axis tidal turbine[D]. Guangzhou: South China University of Technology, 2013.
[9]
郭伟. 新型竖轴潮流能转换装置数值与试验研究[D]. 大连:大连理工大学,2014.
GUO wei. Numerical and experiment studies on a novel vertical-axis tidal current energy conversion device[D]. Dalian: Dalian University of Technology, 2014.
[10]
LAÍN S, LÓPEZ O, QUINTERO B, et al. Design optimization of a vertical axis water turbine with CFD[J]. Alternative Energies, 2013, 34: 113-139.
[11]
汤金桦李 春李润杰. 垂直轴潮流能涡轮机水动特性研究[J]. 水资源与水工程学报2017, 28(1): 130-135.
TANG Jinhu, LI Chun, LI Runjie. Research on hydrodynamic characteristics of vertical axis tidal current turbine[J]. Journal of Water Resources and Water Engineering, 2017, 28(1): 130-135.
[12]
李志川张理肖钢,等. 垂直轴水轮机CFD数值模拟有效性验证[J]. 应用能源技术2014(2): 1-6.
LI Zhichuan, ZHANG Li, XIAO Gang, et al. Verification of vertical axis tidal turbine CFD numerical simulation effectiveness[J]. Applied Energy Technology, 2014(2): 1-6.
[13]
孙科张亮何环宇. 三叶片垂直轴水轮机自启动性能数值计算[J]. 哈尔滨工业大学学报2016, 48(4): 144-148.
SUN Ke, ZHANG Liang, HE Huanyu. Numerical computation on self-starting position of a three-blade vertical axis hydro-turbine[J]. Journal of Harbin Institute of Technology, 2016, 48(4): 144-148.
[14]
康海贵谢宇陈兵,等. 一种新型垂直轴潮流能水轮机性能的初步研究[J]. 可再生能源2014, 32(9): 1385-1390.
KANG Haigui, XIE Yu, CHEN Bing, et al. A preliminary study on a novel vertical axis tidal current turbine[J]. Renewable Energy Resources, 2014, 32(9): 1385-1390.
[15]
王立. 偏流作用下海流能转换器的技术研究[D]. 杭州:浙江工业大学,2011.
WANG Li. Technical study of marine current energy converters under the yawing angle[D]. Hangzhou: Zhejiang University of Technology, 2011.
[16]
王菁菁叶似锦郑卫刚. H型垂直轴双转子风力洋流发电机的设计[J]. 电源世界2013(11): 42-45, 35.
WANG Jingjing, YE Sijin, ZHENG Weigang. A design of H-type vertical axis rotor wind currents generator[J]. The World of Power Supply, 2013(11): 42-45, 35.

基金

国家自然科学基金项目(51309034)
Project supported by National Natural Science Foundation of China(51309034)
湖南省教育厅科学研究优秀青年项目(14B004)

编辑: 蒋毅恒
PDF(1524 KB)

Accesses

Citation

Detail

段落导航
相关文章

/