TICC-500系统储能阶段动态热力特性分析

赵豫晋

分布式能源 ›› 2017, Vol. 2 ›› Issue (6) : 72-77.

PDF(2423 KB)
PDF(2423 KB)
分布式能源 ›› 2017, Vol. 2 ›› Issue (6) : 72-77. DOI: 10.16513/j.cnki.10-1427/tk.2017.06.012

TICC-500系统储能阶段动态热力特性分析

作者信息 +

Dynamic Thermal Characteristics of TICC-500 System During Energy Storage

Author information +
文章历史 +

摘要

Advanced adiabatic compressed air energy storage system is of great significance for power grid peaking, and it is one of the key development directions of power industry in the future. In order to study the thermodynamic characteristics of each subsystem when the compressor speed and inlet flow rate change, taking the TICC-500 energy storage system as the research object, this paper uses the lumped parameter method to model the response of the energy storage stage caused by the disturbance. The results show that, when the speed increases, the outlet pressure and temperature of the compressor increase, the efficiency decreases, and the heat release of the air in the heat exchanger at various levels increases; when the inlet flow increases, the outlet pressure and temperature of the compressor decrease, the efficiency decreases, and the heat release of the air in the heat exchanger at various levels decreases.

关键词

绝热压缩空气储能 / 蓄热换热器 / 动态响应 / 集中参数法 / 仿真模拟 / adiabatic compressed air energy storage / regenerative heat exchanger / dynamic response / lumped parameter method / simulation

引用本文

导出引用
赵豫晋, ZHAO Yujin. Dynamic Thermal Characteristics of TICC-500 System During Energy Storage[J]. 分布式能源. 2017, 2(6): 72-77 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.06.012
[J]. Distributed Energy Resources. 2017, 2(6): 72-77 https://doi.org/10.16513/j.cnki.10-1427/tk.2017.06.012

参考文献

[1]
BAZMI A A, ZAHEDI G. Sustainable energy systems: Role of optimization modeling techniques in power generation and supply—A review[J]. Renewable & Sustainable Energy Reviews, 2011, 15(8): 3480-3500.
[2]
YANG Z, WANG Z, RAN P, et al. Thermodynamic analysis of a hybrid thermal-compressed air energy storage system for the integration of wind power[J]. Applied Thermal Engineering, 2014, 66(1-2): 519-527.
[3]
AKINYELE D O, RAYUDU R K. Review of energy storage technologies for sustainable power networks[J]. Sustainable Energy Technologies and Assessments, 2014, 8: 74-91.
[4]
ZUNFT S, JAKIEL C, KOLLER M, et al. Adiabatic compressed air energy storage for the grid integration of wind power[C]//6th Int. Workshop on Large Scale Integration of Wind Power and Transmission Networks for Offshore Windfarms. Netherlands, 2006.
[5]
郭欢许剑陈海生,等. 一种定压运行AA-CAES的系统效率分析[J]. 热能动力工程2013, 28(5): 540-546.
GUO Huan, XU Jian, CHEN Haisheng, et al. Analysis of the efficiency of a AA-CASE system operating at a constant pressure[J]. Journal of Engineering for Thermal Energy and Power, 2013, 28(5): 540-546.
[6]
韩中合庞永超. 先进绝热压缩空气储能中蓄热系统的改进[J]. 分布式能源2016, 1(1): 22-27.
HAN Zhonghe, PANG Yongchao. Modification of thermal energy storage system in AA-CAES[J]. Distributed Energy, 2016, 1(1): 22-27
[7]
李雪梅杨科张远. AA-CAES系统储气室热力学特性研究[J]. 工程热物理学报2015(3): 513-516.
LI Xuemei, YANG Ke, ZHANG Yuan. Thermodynamic Analysis of storage cavern in advanced adiabatic compressed air energy storage system[J]. Journal of Engineering Thermophysics, 2015(3): 513-516.
[8]
GRAZZINI G, MILAZZO A. Thermodynamic analysis of CAES/TES system for renewable energy plants[J]. Renewable Energy, 2008, 33(9): 1998-2006.
[9]
KUSHNIR R, DAYAN A, ULLMANN A. Temperature and pressure variations within compressed air energy storage caverns[J]. International Journal of Heat & Mass Transfer, 2012, 55(21-22): 5616-5630.
[10]
韩中合庞永超. 储气室热力学特性对AA-CAES性能的影响[J]. 化工进展2017, 36(1): 47-52.
HAN Zhonghe, PANG Yongchao. Influence of thermodynamic properties of air storage chamber on the performance of AA-CAES[J]. Chemical Industry and Engineering Progress, 2016, 36(1): 47-52.

编辑: 蒋毅恒
PDF(2423 KB)

Accesses

Citation

Detail

段落导航
相关文章

/