660 MW超临界燃煤锅炉引入生物质气再燃方案及运行特性分析

吴跃明,吴智泉

分布式能源 ›› 2018, Vol. 3 ›› Issue (1) : 14-20.

PDF(2740 KB)
PDF(2740 KB)
分布式能源 ›› 2018, Vol. 3 ›› Issue (1) : 14-20. DOI: 10.16513/j.cnki.10-1427/tk.2018.01.003

660 MW超临界燃煤锅炉引入生物质气再燃方案及运行特性分析

作者信息 +

Introduction of Biomass Gas Reburning Scheme and Operation Characteristics of 660 MW Supercritical Coal-Fired Boilers

Author information +
文章历史 +

摘要

以某公司660 MW超临界燃煤机组锅炉引入生物质气化燃气再燃发电的两个项目(燃气发电功率10 MW/20 MW)为例,结合“四角切圆”和“前后墙对冲”锅炉的具体特点,选择优化的燃烧器改造方案。针对具体的燃气引入方式,全面分析锅炉运行中NOx排放、主要参数变化、低负荷稳燃、受热面腐蚀、炉膛结渣等情况,并委托锅炉厂进行掺烧前后的性能核算和计算流体动力学(computational fluid dynamics, CFD)数值模拟计算。各种工况掺烧燃气后,NOx降低明显,排烟温度增加,锅炉计算效率总体呈降低趋势。

Abstract

This paper studies two reburning power generation projects with 10 MW/20 MW gas power in a company based on 660 MW supercritical coal-fired unit boilers with biomass gas induced in. The optimized burner modification scheme is selected combined with the specific features of ‘four corners cutting circular’ and ‘front and back wall hedging’ boilers. According to the specific gas intake method, we comprehensively analyze the NOx emission, main parameters change, low load stable combustion, heating surface corrosion and furnace slag, etc. Also, the performance accounting and computational fluid dynamics (CFD) numerical simulation calculation are carried out in the commissioned boiler factory before and after mixed burning. The NOx decreases obviously, the exhaust temperature increases, and the calculation efficiency of the boiler decreases after burning gas intake in various working conditions.

关键词

660 MW超临界燃煤机组锅炉 / 生物质气 / 再燃运行特性

Key words

660 MW supercritical coal-fired boiler / biomass gas / reburning operating characteristics

引用本文

导出引用
吴跃明, 吴智泉. 660 MW超临界燃煤锅炉引入生物质气再燃方案及运行特性分析[J]. 分布式能源. 2018, 3(1): 14-20 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.01.003
Yueming WU, Zhiquan WU. Introduction of Biomass Gas Reburning Scheme and Operation Characteristics of 660 MW Supercritical Coal-Fired Boilers[J]. Distributed Energy Resources. 2018, 3(1): 14-20 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.01.003

参考文献

[1]
吴智泉韩中合向鹏,等. 生物质气化与燃煤耦合发电系统能流和流分析[J]. 分布式能源2017, 2(6): 8-13.
WU Zhiquan, HAN Zhonghe, XIANG Peng, et al. Energy and exergy flow analysis of biomass gasification-coal coupling power generation system[J]. Distributed Energy, 2017, 2(6): 8-13.
[2]
孙俊威阎维平赵文娟,等. 600 MW超临界燃煤锅炉生物质气体再燃的数值研究[J]. 动力工程学报2012, 32(2): 89-95.
SUN Junwei, YAN Weiping, ZHAO Wenjuan, et al. Numerical study on biomass gas reburning in a 600 MW supercritical coal-fired boiler[J]. Journal of Chinese Society of Power Engineering, 2012, 32(2): 89-95.
[3]
王禹朋. 基于秸秆气化的外燃机热电联供的技术经济性研究[D]. 保定:华北电力大学,2016.
WANG Yupeng. Technological research of external combusion stirling engine with combined heating and power based on biomass gasification[D]. Baoding: North China Electric Power University, 2016.
[4]
陈昊. 生物质热载体循环流化床气化系统集成[D]. 北京:北京化工大学,2016.
CHEN Hao. Biomass gasification system integrated with dual fluidized bed reactor technology[D]. Beijing: Beijing University of Chemical Technology, 2016.
[5]
阴秀丽吴创之郑舜鹏,等. 中型生物质气化发电系统设计及运行分析[J]. 太阳能学报2000, 21(3): 307-312.
YIN Xiuli, WU Chuangzhi, ZHENG Shunpeng, et al. Design and operation analysison middle-size biomassgasification & power generation system[J]. Acta Energiae Solaris Sinica, 2000, 21(3): 307-312.
[6]
何军飞马晓茜. 中型生物质气化发电CDM项目案例分析[J]. 太阳能学报2006, 27(10): 1043-1048.
HE Junfei, MA Xiaoqian. CDM case study on middle-size biomass gasification power generation[J]. Acta Energiae Solaris Sinica, 2006, 27(10): 1043-1048.
[7]
段佳罗永浩晏乃强,等. 生物质气化再燃特性实验研究[J]. 燃料化学学报2007, 35(2): 245-248.
DUAN Jia, LUO Yonghao, YAN Naiqiang, et al. Experimental study on characteristics of biomass gasification-reburning[J]. Journal of Fuel Chemistry and Technology, 2007, 35(2): 245-248.
[8]
刘华财阴秀丽吴创之. 生物质气化发电能耗和温室气体排放分析[J]. 太阳能学报2015, 36(10): 2553-2558.
LIU Huacai, YIN Xiuli, WU Chuangzhi. Energy consumption and greenhouse gas emission of biomass gasificationand power generation system[J]. Acta Energiae Solaris Sinica, 2015, 36(10): 2553-2558.
[9]
韩璞李大中刘晓伟. 生物质气化发电燃气焦油脱除方法的探讨[J]. 可再生能源2008, 26(1): 40-45.
HAN Pu, LI Dazhong, LIU Xiaowei. The discussion on tar removal method in biomass gasification for power system[J]. Renewable Energy Resources, 2008, 26(1): 40-45.
[10]
杜厚浩. 生物质气化混燃发电气化炉系统自动控制研究[J]. 大陆桥视野2016(18): 173-175.
[11]
沈磊庄惠生. 我国生物质气化发电行业综合风险评价[J]. 环境工程2015, 33(4): 137-141.
SHEN Lei, ZHUANG Huisheng. Study on comprehensive risk assessment of biomass gasification power generation industry in China[J]. Environmental Engineering, 2015, 33(4): 137-141.
[12]
周高强. 燃煤与生物质气化耦合发电技术方案分析[J]. 内燃机与配件2016(12): 133-135.
ZHOU Gaoqiang. Analysis of coaland biomass gasification coupled power generation technology[J]. Internal Combustion Engine & Parts, 2016(12): 133-135.
[13]
王红梅张现飞张兰珍,等. 流化床生物质气化发电过程动力学建模与验证[J]. 可再生能源2011, 29(4): 48-52.
WANG Hongmei, ZHANG Xianfei, ZHANG Lanzhen, et al. Kinetic modeling and verification of the biomass gasificationby nuidized bed[J]. Renewable Energy Resources, 2011, 29(4): 48-52.

编辑: 谷子
PDF(2740 KB)

Accesses

Citation

Detail

段落导航
相关文章

/