铅酸蓄电池寿命预测的LIBSVM建模方法研究

杨传凯,刘伟,李旭,李良书,付峰,周际城,陈凯

分布式能源 ›› 2018, Vol. 3 ›› Issue (1) : 28-33.

PDF(969 KB)
PDF(969 KB)
分布式能源 ›› 2018, Vol. 3 ›› Issue (1) : 28-33. DOI: 10.16513/j.cnki.10-1427/tk.2018.01.005

铅酸蓄电池寿命预测的LIBSVM建模方法研究

作者信息 +

LIBSVM Modeling Method for Life Prediction of Lead-Acid Battery

Author information +
文章历史 +

摘要

铅酸蓄电池的内阻会随其运行时间增加而增大,从而使其容量下降并导致循环使用寿命减小。因此,对其使用寿命的准确评估预测将有助于提高变电站直流电源系统的持续供电能力和运行可靠性。LIBSVM支持向量机是遵循结构风险最小化原则发展的机器学习方法,将其用于蓄电池寿命预测,具有不依靠蓄电池详细数学模型建立其循环寿命预测模型的特点。基于此,在研究支持向量机的基本原理基础上,进一步研究利用LIBSVM支持向量机基于蓄电池健康状态、端电压和电池剩余容量的训练样本数据,建立反映电池容量与健康状态和端电压非线性映射的建模方法,并讨论基于交叉验证设计LIBSVM回归机最优参数的方法。实验结果表明,基于LIBSVM的铅酸蓄电池寿命预测模型具有较高的预测精度,该方法是切实可行的。

Abstract

The internal resistance of the lead-acid battery increases as its operating time increases, which will result in the decrease in its capacity and a consequent reduction in service life. Therefore, the accurate assessment and prediction of its useful life is benefit for improving the ability of continuous power supply and operational reliability of substation DC power system. The support vector machine of LIBSVM is a machine learning method that follows the principle of structural risk minimization. It has the characteristic of using support vector machine to establish the predict model of the battery useful life without modeling the detailed mathematical model of battery. So based on studying the basic principle of support vector machine, the method that uses the support vector machine of LIBSVM to model the non-linear mapping between useful life and both the terminal voltage and state of health based on the training sample data of these three state variables is proposed. At the same time, the method of designing the optimal parameters for the regression machine of LIBSVM based on cross-validation is discussed. The experimental results show that the LIBSVM-based lead-acid battery life prediction model has high prediction accuracy. The feasibility of the proposed prediction method is verified as well.

关键词

LIBSVM / 支持向量机 / 铅酸蓄电池 / 寿命预测

Key words

LIBSVM / support vector machine / lead-acid battery / life prediction

引用本文

导出引用
杨传凯, 刘伟, 李旭, . 铅酸蓄电池寿命预测的LIBSVM建模方法研究[J]. 分布式能源. 2018, 3(1): 28-33 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.01.005
Chuankai YANG, Wei LIU, Xu LI, et al. LIBSVM Modeling Method for Life Prediction of Lead-Acid Battery[J]. Distributed Energy Resources. 2018, 3(1): 28-33 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.01.005

参考文献

[1]
徐凯. 对110 kV变电站直流系统改造方案的探讨[J]. 电力系统保护与控制2010, 38(7): 116-118, 123.
XU Kai. Discussion about replacement scheme for 110 kV substation DC system[J]. Power System Protection and Control, 2010, 38(7): 116-118, 123.
[2]
罗伟林张立强吕超,等. 锂离子电池寿命预测国外研究现状综述[J]. 电源学报2013(1): 140-144.
LUO Weilin, ZHANG Liqiang, LYU Chao, et al. Review on foreign status of life prediction of lithium-ion batteries[J]. Journal of Power Supply, 2013(1): 140-144.
[3]
乔波强侯振义王佑民. 蓄电池剩余容量预测技术现状及发展[J]. 电源世界2012(2): 21-26, 35.
QIAO Boqiang, HOU Zhenyi, WANG Youmin. The status quo and development of remaining capacity prediction technology for VRLLA batteries[J]. The World of Power Supply, 2012(2): 21-26, 35.
[4]
林志强滕秀花. 基于改进型安时法的蓄电池剩余电量测试技术[J]. 贵州大学学报2009, 26(6): 108-110.
LIN Zhiqiang, TENG Xiuhua. Accumulator's state of charge testing technology[J]. Journal of Guizhou University, 2009, 26(6): 108-110.
[5]
WENZL H, BARING-GOULD I, KAISER R, et al. Life prediction of batteries for selecting the technically most suitable and cost effective battery[J]. Journal of Power Sources, 2005, 144(2): 373-384.
[6]
ZHANG Q, WHITE R E. Capacity fade analysis of a lithiumion cell[J]. Journal of Power Sources, 2008, 179(2): 793-798.
[7]
汲乔瑶. 基于数据驱动的无人艇蓄电池剩余寿命预测[D]. 大连:大连海事大学,2015.
JI Qiaoyao. The prediction of remaining useful life based on data-driven for storage battery of unmanned submarine[D]. Dalian: Dalian Maritime University, 2015.
[8]
谢家雨李卫青胡焱. 基于PNN的航空铅酸蓄电池容量预测[J]. 测控技术2015, 34(2): 115-117.
XIE Jiayu, LI Weiqing, HU Yan. Aviation lead-acid battery capacity prediction based on probabilistic neural network[J]. Measurement and Control Technology, 2015, 34(2): 115-117.
[9]
顾亚祥丁世飞. 支持向量机研究进展[J]. 计算机科学2011, 38(2): 14-17.
GU Yaxiang, DING Shifei. Advances of support vector machines (SVM)[J]. Computer Science, 2011, 38(2): 14-17.
[10]
宋召青崔和胡云安. 支持向量机理论的研究与进展[J]. 海军航空工程学院学报2008, 23(2): 143-148, 152.
SONG Zhaoqing, CUI He, HU Yun'an. Research and development of support vector machine theory[J]. Journal of Naval Aeronautical and Astronautical University, 2008, 23(2): 143-148, 152.
[11]
DUBARRY M, SVOBODA V, HWU R, et al. Capacity and power fading mechanism identification from a commercial cell evaluation[J]. Journal of Power Sources, 2007, 165(2): 566-572.
[12]
杨军解晶莹王久林. 化学电源测试原理与技术[M]. 北京:化学工业出版社,2006.
[13]
XING Y, WILLIARD N, TSUI K L, et al. A comparative review of prognostics-based reliability methods for Lithium batteries[C]//Prognostics and System Health Management Conference, Shenzhen, 2011.
[14]
CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines: and other kernel-based learning methods[M]. Oxford City, United Kingdom of British: Cambridge University Press, 2000.
[15]
FUKUSHI D, SHICHIRI M, SUGIYAMA S, et al. Scanning near-field optical/atomic force microscopy detection of fluorescence in situ hybridization signals beyond the optical limit[J]. Experimental Cell Research, 2003, 289(2): 237-44.
[16]
CHAPELLE O, VAPNIK V, BOUSQUET O, et al. Choosing multiple parameters for support vector machines[J]. Machine Learning, 2002, 46(1-3): 131-159.
[17]
HUANG C M, LEE Y J, LIN D K J, et al. Model selection for support vector machines via uniform design[J]. Computational Statistics & Data Analysis, 2007, 52(1): 335-346.

基金

国家自然科学基金项目(51577075)

编辑: 谷子
PDF(969 KB)

Accesses

Citation

Detail

段落导航
相关文章

/