先进高负荷压气机气动设计技术综述

宋寅

分布式能源 ›› 2018, Vol. 3 ›› Issue (3) : 1-9.

PDF(3469 KB)
PDF(3469 KB)
分布式能源 ›› 2018, Vol. 3 ›› Issue (3) : 1-9. DOI: 10.16513/j.cnki.10-1427/tk.2018.03.001

先进高负荷压气机气动设计技术综述

作者信息 +

Review on Aerodynamics Design of Advanced Highly-Loaded Compressor

Author information +
文章历史 +

摘要

As the core device of centralized, distributed power generation and multienergy complementary system based on natural gas, gas turbine is of great significance to the energy and electric power industry. As one of three main parts of gas turbine, compressor's performance and reliability directly determine whether gas turbine will operate safely and efficiently. This paper reviews the progress of the compressor aerodynamic design in two aspects, the aerodynamic design system and blade design technology. The aerodynamic design system has developed form quasi-three-dimensional design system based on two-dimensional throughflow design, to three-dimensional design system which combines three-dimensional computational fluid dynamics (CFD) technology with throughflow design. The blade design technology has developed from the traditional series profile and two-dimensional profile optimization to full three-dimensional blade and end-wall contouring technology. In this study, it is noted that the impact of various three-dimensional design features on the three-dimensional internal flow field of the multistage compressor is nonlinear, thus the three-dimensional optimization of compressor should be taken into full consideration. The best combination of the design elements in three-dimensional design needs to be obtained through an iteration process, so as to improve the efficiency and stall-margin of the compressor.

关键词

燃气轮机 / 高负荷压气机 / 通流设计 / 叶片优化 / gas turbine / highly-loaded compressor / throughflow design / blade profile optimization

引用本文

导出引用
宋寅, SONG Yin. Review on Aerodynamics Design of Advanced Highly-Loaded Compressor[J]. 分布式能源. 2018, 3(3): 1-9 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.03.001
[J]. Distributed Energy Resources. 2018, 3(3): 1-9 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.03.001
中图分类号: TK 47   

参考文献

[1]
HIRSCH C, DENTON J. Through flow calculations in axial turbomachines[R]. Neuilly sur Seine, France: AGARD, 1981.
[2]
DENTON J. Designing in three dimensions[R]. Neuilly sur Seine, France:AGARD, 1994.
[3]
程荣辉. 轴流压气机设计技术的发展[J]. 燃气涡轮试验与研究2004, 17(2):1-8.
CHEN Ronghui. Development of design technology for axial compressoe[J]. Gas Turbine Experiment and Research, 2004, 17(2):1-8.
[4]
LEJAMBRE C R, ZACHARIAS R M, BIEDERMAN B P, et al. 1995 ASME gas turbine award paper: development and application of a multistage navier—stokes flow solver, part Ⅱ: application to a high-pressure compressor design[J]. Journal of Turbomachinery, 1998, 120(2):215-223.
[5]
STEVEN R, ROBORT A. Redesign of a 12-stage axial-flow compressor using multistage CFD[C]//ASME Turbo Expo, New York, 2001.
[6]
赵晓路. 使用槽道平均模型的多叶片排N-S方程并行计算[C]//工程热物理学会热机气动热力学学术会议. 杭州, 1998.
[7]
陈乃兴张宏武徐燕骥,等. 多级轴流压气机三维气动设计的一种快速方法[J]. 工程热物理学报2003, 24(4):583-585.
CHEN Naixing, ZHANG Hongwu, XU Yanji, et al. Numerical simulation of leakage flow in rotor tip clearance of a transonic turbine stage[J]. Journal of Engineering Thermophysics, 2003, 24(4):583-585.
[8]
赵斌刘宝杰. 跨声串列转子及前后排叶片匹配特性分析[J]. 航空学报2011, 32(6):978-987.
ZHAO Bin, LIU Baojie. Effects of relative position of forward and aft blades on performance of tandem rotor[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):978-987.
[9]
李清华安利平徐林,等. 高负荷压气机设计技术探索研究与试验验证[J]. 航空学报2017, 35(1):1-12.
LI Qinghua, AN Liping, XU lin, et al. Exploratory research and test verification of high load compressor design technique[J]. Acta Aeronautica et Astronautica Sinica, 2017, 35(1):1-12.
[10]
SICOT F, DUFOUR G, GOURDAIN N. A time-domain harmonic balance method for rotor/stator interactions[J]. Journal of Turbomachinery, 2012, 134(1):1-13.
[11]
HALL E J. Aerodynamic modelling of multistage compressor flow fields Part 1: Analysis of rotor-stator-rotor aerodynamic interaction[C]//Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 1998, 212(2): 77-89.
[12]
柳阳威刘宝杰. 跨音压气机确定应力场分析[J]. 航空学报2007, 28(S1):1-6.
LIU Yangwei, LIU Baojie. Analysis of deterministic stresses in a transonic compressor[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(S1):1-6.
[13]
KÖLLER U, MONIG R, KUSTERS B, et al. 1999 turbomachinery committee best paper award: development of advanced compressor airfoils for heavy-duty gas turbines, part Ⅰ: design and optimization[J]. Journal of Turbomachinery, 2000, 122(3):397-405.
[14]
KÜSTERS B, SCHREIBER H-A, KOLLER U, et al. 1999 turbomachinery committee best paper award: Development of advanced compressor airfoils for heavy-duty gas turbines, part Ⅱ: experimental and theoretical analysis[J]. Journal of Turbomachinery, 2000, 122(3):406-414.
[15]
刘波周新海严汝群. 轴流压气机可控扩散叶型的数值优化设计[J]. 航空动力学报1991, 6(1):9-12, 89.
LIU Bo, ZHOU Xinhai, YAN Ruqun. Numerical optimization program for designing controlled diffusion compressor bladeing[J]. Journal of Aerospace Power, 1991, 6(1):9-12, 89.
[16]
程荣辉仲永兴严汝群. 大弯度可控扩散叶型叶栅槽道中气体流动的试验研究[J]. 航空动力学报1993, 8(3):221-224, 306.
CHENG Ronghui, ZHONG Yongxing, YAN Ruqun. Investigation of flows in a controlled diffusion airfoll cascade passage[J]. Journal of Aerospace Power, 1993, 8(3):221-224, 306.
[17]
程荣辉周拜豪余华蔚,等. 定制叶型技术及其在压气机设计中的应用[J]. 燃气涡轮试验与研究2000, 13(1):15-22.
[18]
周亚峰. 可控扩散叶栅设计与试验[J]. 航空发动机1994(3):8-27.
[19]
李泯江祁祎邓宝洋,等. 高负荷跨音压气机转子ATS-3气动设计[J]. 航空动力学报2002, 17(2):183-187.
LI Minjiang, QI Wei, DENG Baoyang, et al. Aerodynamic design of high load transonic compressor stage[J]. Journal of Aerospace Power, 2002, 17(2):183-187.
[20]
赵峰桂幸民. 低雷诺数效应对某可控扩散叶型性能的影响[J]. 航空动力学报2006, 21(2):285-289.
ZHAO Feng, GUI Xingmin. The low reynolds number effects on the performance of some controlled diffusion airfoils[J]. Journal of Aerospace Power, 2006, 21(2):285-289.
[21]
柯婷凤郑群明玉周. 某三级轴流式低速压气机零级气动优化设计[J]. 机械工程学报2011, 47(6):160-167.
KE Tingfeng, ZHENG Qun, MING Yuzhou. Aerodynamic design and optimization of zero-stage for three-stage axial-flow low-speed compressor[J]. Journal of Mechanical Engineering, 2011, 47(6):160-167.
[22]
EGARTNER W. Working range optimization for turbine and compressor blading[J]. Journal of Computational and Applied Mathematics, 2000, 120(1):59-65.
[23]
OBAYASHI S, TSUKAHARA T, NAKAMURA T. Multiobjective genetic algorithm applied to aerodynamic design of cascade airfoils[J]. IEEE Transactions on Industrial Electronics, 2000, 47(1):211-216.
[24]
KORAKIANITIS T, HAMAKHAN I A, REZAIENIA M A, et al. Design of high-efficiency turbomachinery blades for energy conversion devices with the three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method[J]. Applied Energy, 2011, 89(1):215-227.
[25]
KORAKIANITIS T, HAMAKHAN I A, REZAIENIA M A, et al. Two- and three-dimensional prescribed surface curvature distribution blade design (CIRCLE) method for the design of high efficiency turbines, compressors, and isolated airfoils[C]//ASME Turbo Expo, Vancouver, 2011.
[26]
SOMMER L, BESTLE D. Curvature driven two-dimensional multi-objective optimization of compressor blade sections[J]. Aerospace Science and Technology, 2011, 15(4):334-342.
[27]
周正贵. 压气机叶片自动优化设计[J]. 航空动力学报2002, 17(3):197-200.
ZHOU Zhenggui. Automatic design optimization of compressor blades[J]. Journal of Aerospace Power, 2002, 17(3):197-200.
[28]
周正贵. 高亚声速压气机叶片优化设计[J]. 推进技术2004, 25(1):58-61.
ZHOU Zhenggui. Optimization of high subsonic axial compressor blades[J]. Journal of Propulsion Technology, 2004, 25(1):58-61.
[29]
李军邓清华丰镇平. 基于进化算法的压气机叶型多目标优化设计[J]. 中国电机工程学报2004, 24(10):205-209.
LI Jun, DENG Qinghua, FENG Zhenping. Multiobjective optimization design of a compressor airfoil using evolutionary algorithms[J]. Proceedings of the CSEE, 2004, 24(10):205-209.
[30]
汪光文周正贵胡骏. 基于并行遗传算法压气机叶片自动优化设计[J]. 航空动力学报2006, 21(5):924-929.
WANG Guangwen, ZHOU Zhenggui, HU Jun. Design optimization of compressor blades using parallel genetic algorithms[J]. Journal of Aerospace Power, 2006, 21(5):924-929.
[31]
赵鹏程刘波宣扬,等. 基于遗传算法的压气机叶型优化设计[J]. 航空计算技术2011, 41(6):12-15.
ZHAO Pengcheng, LIU Bo, XUAN Yang, et al. Design optimization of compressor blades based on genetic algorithm[J]. Aeronautical Computing Technique, 2011, 41(6):12-15.
[32]
金东海陈佳桂幸民. 压气机叶栅多点气动优化设计[J]. 推进技术2007, 28(4):367-372.
JIN Donghai, CHEN Jia, GUI Xingmin. Multi-point aerodynamic design optimization for compressor cascade airfoils[J]. Journal of Propulsion Technology, 2007, 28(4):367-372.
[33]
ZANNETTI L. Time-dependent method to solve the inverse problem for internal flows[J]. AIAA Journal, 1980, 18(7):754-758.
[34]
THOMPKINS J W T, TONG S S. Inverse or design calculations for nonpotential flow in turbomachinery blade passages[J]. Journal of Engineering for Power, 1982, 104(2):281-285.
[35]
SANZ J. Automated design of controlled-diffusion blades[J]. Journal of Turbomachinery, 1988, 110(4):540-544.
[36]
DANG T. Inverse method for turbomachine blades using shock-capturing techniques[C]//Proceedings of AIAA, ASME, SAE, and ASEE, Joint Propulsion Conference and Exhibit, 31 st, San Diego, CA. 1995.
[37]
HIELD P. Semi-inverse design applied to an eight stage transonic axial flow compressor[C]//ASME Turbo Expo, Berlin, 2008.
[38]
刘秋生沈孟育. 平面跨音速叶栅正、反混合问题的一种高效率解法[J]. 力学学报1988, 20(4):289-296.
[39]
KOCH C, SMITH J L. Loss sources and magnitudes in axial-flow compressors[J]. Journal of Engineering for Power, 1976, 98(3):411.
[40]
WISLER D C. Loss reduction in axial-flow compressors through low-speed model testing[J]. Journal of Engineering for Gas Turbines and Power, 1985, 107(2):354-363.
[41]
SMITH J L H, YEH H. Sweep and dihedral effects in axial-flow turbomachinery[J]. Journal of Basic Engineering, 1963, 85(3):401-405.
[42]
WEINGOLD H D, NEUBERT R J, BEHLKE R F, et al. Bowed stators: an example of CFD applied to improve multistage compressor efficiency[J]. Journal of Turbomachinery, 1997, 119(2):161-168.
[43]
王仲奇郑严. 叶轮机械弯扭叶片的研究现状及发展趋势[J]. 中国工程科学2000, 2(6):40-48.
WANG Zhongqi, ZHENG Yan. Research status and development of the bowed-twisted blade for turbomachines[J]. Engineering Sciences, 2000, 2(6):40-48.
[44]
GÜMMER V, WENGER U, KAU H P. Using sweep and dihedral to control three-dimensional flow in transonic stators of axial compressors[J]. Journal of Turbomachinery, 2001, 123(1):40-48.
[45]
FISCHER A, RIESS W, SEUME J R. Performance of strongly bowed stators in a four-stage high-speed compressor[J]. Journal of Turbomachinery, 2004, 126(3):333-338.
[46]
HOEGER M, SIEVERS N, LAWERENZ M. On the performance of compressor blades with contoured end-walls[C]//The 4th European Conference on Turbomachinery, Florence. 2001: 711-720.
[47]
HOEGER M, CARDAMONE P, FOTTNER L. Influence of endwall contouring on the transonic flow in a compressor blade[C]//ASME Turbo Expo, Amsterdam, 2002.
[48]
DORFNER C, HERGT A, NICKE E, et al. Advanced nonaxisymmetric endwall contouring for axial compressors by generating an aerodynamic separator, part Ⅰ: principal cascade design and compressor application[J]. Journal of Turbomachinery, 2011, 133(2):1-6.
[49]
卢家玲楚武利刘志伟,等. 轴流压气机非轴对称机匣造型的研究[J]. 工程热物理学报2009, 30(2):209-213.
LU Jialing, CHU Wuli, LIU Zhiwei, et al. Nonaxisymmetric casing on axial flow compressors[J]. Journal of Engineering Thermophysics, 2009, 30(2):209-213.
[50]
胡书珍卢新根张宏武,等. 亚音速轴流压气机转子非轴对称轮毂端壁的数值研究[J]. 工程热物理学报2009, 30(3):385-388.
HU Shuzhen, LU Xingen, ZHANG Hongwu, et al. Numerical investigation on a subsonic axial-flow compressor rotor with the implementation of non-axiasymmetric hub end wall[J]. Journal of Engineering Thermophysics, 2009, 30(3):385-388.
[51]
徐全勇侯安平李绍斌,等. 轮毂曲线对跨声速压气机转子性能的影响[J]. 工程热物理学报2009, 30(5):761-764.
XU Quanyong, HOU Anping, LI Shaobin, et al. Influences of hub design on rotor performance in transonic compressor[J]. Journal of Engineering Thermophysics, 2009, 30(5):761-764.
[52]
李秋实杨春肖文富,等. 端壁造型抑制角区失速的数值研究[J]. 自然科学进展2009, 19(5):537-543.
[53]
刘波曹志远黄建,等. 跨声速轴流压气机非轴对称端壁造型优化设计[J]. 推进技术2012, 33(5):689-694.
LIU Bo, CAO Zhiyuan, HUANG Jian, et al. Design optimization for a transonic compressor with implementation of non-axisymmetric endwall contouring[J]. Journal of Propulsion Technology, 2012, 33(5):689-694.
[54]
李兰攀楚武利张皓光. 端壁倒圆对高负荷压气机叶栅性能及流场影响的机理探究[J]. 推进技术2017, 38(12):1-10.
LI Lanpan, CHU Wuli, ZHANG Haoguang. Mechanism study of end-wall fillet's influence on performance and flow field of high-load compressor cascade[J]. Journal of Propulsion Technology, 2017, 38(12):1-10.
[55]
WADIA A, BEACHER B. Three-dimensional relief in turbomachinery blading[J]. Journal of Turbomachinery, 1990, 112(4):587-598.

编辑: 蒋毅恒
PDF(3469 KB)

Accesses

Citation

Detail

段落导航
相关文章

/