一种考虑建筑物蓄热特性的分布式冷热电联供系统运行优化方法

姚帅, 顾伟, 陆帅, 吴晨雨, 潘光胜

分布式能源 ›› 2018, Vol. 3 ›› Issue (4) : 16-23.

PDF(2930 KB)
PDF(2930 KB)
分布式能源 ›› 2018, Vol. 3 ›› Issue (4) : 16-23. DOI: 10.16513/j.cnki.10-1427/tk.2018.04.003

一种考虑建筑物蓄热特性的分布式冷热电联供系统运行优化方法

作者信息 +

An Operational Optimization Method of Combined Cooling, Heating and Power System Considering Heat Storage Characteristics of Buildings

Author information +
文章历史 +

摘要

建筑物蓄热特性在促进电热耦合系统中可再生能源的消纳,提升系统运行灵活性和经济性等方面潜力巨大。针对分布式冷热电联供系统中采用双管式热水供暖的建筑物,在分析散热器工作特性和建筑物耗热特性的基础上建立由供水温度和室外环境温度实时确定房间温度的建筑物蓄热特性模型;并对模型中的可变参数进行灵敏度分析,研究各参数发生微小扰动对室内温度的影响。在此基础上,进一步建立结合建筑物蓄热特性的分布式冷热电联供系统运行优化模型,以日运行费用最小为目标函数,综合考虑室温舒适性约束和供回水温度约束。算例结果表明,建筑物蓄热特性能起到负荷转移作用,在低电价时蓄热,高电价时放热,能有效提升系统运行的经济性和灵活性。

Abstract

The heat storage characteristics of buildings have great potential in promoting the absorption of renewable energy and improving the flexibility and economical efficiency of the combined heat and power system. In this paper, a building with double-tube hot water heating system in a distributed combined cooling, heating, and power (CCHP) system is studied. Based on the analysis of the performance of radiators and the heat consumption of buildings, the heat storage model of buildings is established, which determines the room temperature in real time from the temperatures of supplied water and outdoor environment. Sensitivity analysis of several variable parameters is conducted to investigate the influence of minor disturbance of a parameter on indoor temperature. On this basis, this paper further establishes an operational optimization model of a distributed CCHP system considering the heat storage characteristics of buildings, taking the minimum daily operating cost as the objective function, and the indoor temperature limits, the supply and return temperature limits as constraints. The simulation results show that the heat storage characteristics of buildings can transfer the load, charge the heat at low electricity price and discharge at high, effectively improving system's economical efficiency and flexibility.

关键词

冷热电联供 / 建筑物蓄热 / 房屋舒适度 / 灵敏度分析 / 运行优化

Key words

combined cooling heating and power(CCHP) / building heat storage / housing comfort / sensitivity analysis / operational optimization

引用本文

导出引用
姚帅, 顾伟, 陆帅, . 一种考虑建筑物蓄热特性的分布式冷热电联供系统运行优化方法[J]. 分布式能源. 2018, 3(4): 16-23 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.04.003
Shuai YAO, Wei GU, Shuai LU, et al. An Operational Optimization Method of Combined Cooling, Heating and Power System Considering Heat Storage Characteristics of Buildings[J]. Distributed Energy Resources. 2018, 3(4): 16-23 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.04.003
中图分类号: TK 01    TM 91   

参考文献

[1]
孔祥强. 冷热电联供[M]. 北京:国防工业出版社,2011.
[2]
孙宏斌潘昭光郭庆来. 多能流能量管理研究:挑战与展望[J]. 电力系统自动化2016, 40(15): 1-8.
SUN Hongbin, PAN Zhaoguang, GUO Qinglai. Energy management for multi-energy flow: challenges and pro-spects[J]. Automation of Electric Power Systems, 2016, 40(15): 1-8.
[3]
王伟亮王丹贾宏杰,等. 能源互联网背景下的典型区域综合能源系统稳态分析研究综述[J]. 中国电机工程学报2016, 36(12): 3292-3306.
WANG Weiliang, WANG Dan, JIA Hongjie, et al. A review of steady-state analysis of typical regional integrated energy system under the background of energy internet[J]. Proceedings of the CSEE, 2016, 36(12): 3292-3306.
[4]
GU W, WU Z, BO R, et al. Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: a review[J]. International Journal of Electrical Power and Energy Systems, 2014, 54(1): 26-37.
[5]
王成山洪博文郭力,等. 冷热电联供微网优化调度通用建模方法[J]. 中国电机工程学报2013, 33(31): 26-33.
WANG Chengshan, HONG Bowen, GUO Li, et al. A general modeling method for optimal dispatch of combined cooling heating and power microgrid[J]. Proceedings of the CSEE, 2013, 33(31): 26-33.
[6]
顾伟陆帅王珺,等. 多区域综合能源系统热网建模及系统运行优化[J]. 中国电机工程学报2017, 37(5): 1305-1316.
GU Wei, LU Shuai, WANG Jun, et al. Modeling of the heating network for multi-district integrated energy system and its operation optimization[J]. Proceedings of the CSEE, 2017, 37(5): 1305-1316.
[7]
徐青山曾艾东王凯,等. 基于Hessian内点法的微型能源网日前冷热电联供经济优化调度[J]. 电网技术2016, 40(6): 1657-1665.
XU Qingshan, ZENG Aidong, WANG Kai, et. al. Day-ahead optimized economic dispatching for combined cooling, heating and power in micro energy-grid based on Hessian interior point method[J]. Power System Technology, 2016, 40(6): 1657-1665.
[8]
YANG G, ZHAI X. Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies[J]. Applied Thermal Engineering, 2018(133): 327-340.
[9]
MARINO C, MARUFUZZAMAN M, HU M, et al. Developing a CCHP-microgrid operation decision model under uncertainty[J]. Computers & Industrial Engineering, 2018(115): 354-367.
[10]
GU W, WANG Z, WU Z, et al. An online optimal dispatch schedule for CCHP microgrids based on model predictive control[J]. IEEE Transactions on Smart Grid, 2017, 8(5):2332-2342.
[11]
ZHENG J, ZHOU Z, ZHAO J, et al. Integrated heat and power dispatch truly utilizing thermal inertia of district heating network for wind power integration[J]. Applied Energy, 2018(211): 865-874.
[12]
GU W, WANG J, LU S, et al. Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings[J]. Applied Energy, 2017(199): 234-246.
[13]
LI Z, WU W, SHAHIDEHPOUR M, et al. Combined heat and power dispatch considering pipeline energy storage of district heating network[J]. IEEE Transactions on Sustainable Energy, 2015, 7(1): 12-22.
[14]
顾泽鹏康重庆陈新宇,等. 考虑热网约束的电热能源集成系统运行优化及其风电消纳效益分析[J]. 中国电机工程学报2015, 35(14): 3596-3604.
GU Zepeng, KANG Chongqing, CHEN Xinyu, et al. Operation optimization of integrated power and heat energy systems and the benefit on wind power accommodation considering heating network constraints[J]. Proceedings of the CSEE, 2015, 35(14): 3596-3604.
[15]
DAI Y, CHEN L, MIN Y, et al. Active and passive thermal energy storage in combined heat and power plants to promote wind power accommodation[J]. Journal of Energy Engineering, 2017, 143(5): 1-15.
[16]
PAN Z, GUO Q, SUN H. Feasible region method based integrated heat and electricity dispatch considering building thermal inertia[J]. Applied Energy, 2017(192): 395-407.
[17]
TORADMAL A, KEMMLER T, THOMAS B. Boosting the share of onsite PV-electricity utilization by optimized scheduling of a heat pump using buildings thermal inertia[J]. Applied Thermal Engineering, 2018(137): 248-258.
[18]
ROMANCHENKO D, KENSBY J, ODNBERGER M, et al. Thermal energy storage in district heating: centralised storage vs. storage in thermal inertia of buildings[J]. Energy Conversion & Management, 2018(162): 26-38.
[19]
冉春雨. 供热工程[M]. 北京:化学工业出版社,2009.

基金

国家自然科学基金项目(51477029)

编辑: 谷子
PDF(2930 KB)

Accesses

Citation

Detail

段落导航
相关文章

/