内燃机CCHP系统运行特性及能流分析

谭永生

分布式能源 ›› 2018, Vol. 3 ›› Issue (4) : 24-31.

PDF(6655 KB)
PDF(6655 KB)
分布式能源 ›› 2018, Vol. 3 ›› Issue (4) : 24-31. DOI: 10.16513/j.cnki.10-1427/tk.2018.04.004

内燃机CCHP系统运行特性及能流分析

作者信息 +

Analysis of Operation Characteristics and Energy Flow of Internal Combustion Engine CCHP System

Author information +
文章历史 +

摘要

冷热电联供(combined cooling heating and power, CCHP)系统的运行特性直接关系着联供系统的应用价值。以10 kW内燃机冷热电联供试验台为例,研究系统中各主要设备的运行特性,并对整个系统的能流进行分析。实验结果表明:最佳工况下,内燃机发电效率为30.74%,联供系统一次能源利用率为79.08%;内燃机功率增加使油耗增加,排烟温度逐渐升高,但发电效率呈先升高后下降的趋势;余热回收装置运行性能良好,能有效回收大部分余热;制冷机运行性能受环境温度与出口水温影响较大;系统能流间存在一定的制约关系。此实验研究为进一步了解内燃机冷热电三联供系统的运行提供了重要参考。

Abstract

The operating characteristics of the combined cooling heating and power (CCHP) system relates to the application value of the co-supply system. Taking 10 kW internal combustion engine CCHP triple system test bench as an example, this paper studies the operating characteristics of major equipment in the system and analyzes the energy flow of the entire system. The experimental results show that under the best operating conditions, the internal combustion engine power generation efficiency is 30.74%. At this time, the primary energy utilization rate of the co-fed system is 79.08%. With the increase of the internal combustion engine power increases, the fuel consumption and the exhaust gas temperature gradually increases, but the efficiency of power generation increased first and then decreased; The waste heat recovery device has good performance and can effectively recover most of the waste heat; The operating performance of the refrigerator is affected by the ambient temperature and outlet water temperature; There are certain restrictions on the flow of systems. This experimental study provides an important reference for further understanding of the operation of internal combustion engine CCHP system.

关键词

冷热电三联供 / 运行特性 / 能流

Key words

combined cooling heating and power(CCHP) / operating characteristics / energy flow

引用本文

导出引用
谭永生. 内燃机CCHP系统运行特性及能流分析[J]. 分布式能源. 2018, 3(4): 24-31 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.04.004
Yongsheng TAN. Analysis of Operation Characteristics and Energy Flow of Internal Combustion Engine CCHP System[J]. Distributed Energy Resources. 2018, 3(4): 24-31 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.04.004
中图分类号: TK 01   

参考文献

[1]
金红光郑丹星徐建中. 分布式冷热电联产系统装置及应用[M]. 北京:中国电力出版社,2010.
[2]
YAN B, XUE S, LI Y, et al. Gas-fired combined cooling, heating and power (CCHP) in Beijing: a techno-economic analysis[J]. Renewable & Sustainable Energy Reviews, 2016, 63: 118-131.
[3]
国乐君杨洪海周倩倩. 天然气冷热电三联供系统的发展趋势分析[J]. 电力与能源2013, 34(6): 647-649, 654.
GUO Lejun, YANG Honghai, ZHOU Qianqian. Development tendency's analysis of natural gas-fired combined cooling, heating and power system[J]. Power & Energy, 2013, 34(6): 647-649, 654.
[4]
杨干翟晓强郑春元. 国内冷热电联供系统现状和发展趋势[J]. 化工学报2015, 66(): 1-9.
摘要
s2
YANG Gan, ZHAI Xiaoqiang, ZHENG Chunyuan. Current situation and development trend of domestic cogeneration system[J]. Journal of Chemical Industry, 2015, 66(): 1-9.
s2
[5]
孔祥强王如竹吴静怡. 微型冷热电联供系统集成与实验研究[J]. 工程热物理学报2005, 26(): 21-24.
摘要
z1
KONG Xiangqiang, WANG Ruzhu, WU Jingyi. Integration and experimental research on micro cogeneration system[J]. Journal of Engineering Thermal Physics, 2005, 26(): 21-24.
z1
[6]
蒋润花蔡睿贤崔平,等. 内燃机冷热电联产系统典型变工况特性[J]. 工程热物理学报2011, 32(2): 201-204.
JIANG Runhua, CAI Ruixian, CUI Ping, et al. Typical variable operating characteristics of internal combustion engine cogeneration system[J]. Journal of Engineering Thermal physics, 2011, 32(2): 201-204.
[7]
邢璐石磊HUSSAIN A. 节能减排目标下的企业应对行为研究[J]. 北京大学学报(自然科学版), 2010, 46(3): 465-470.
XING Lu, SHI Lei, HUSSAIN A. A study on the behavior of enterprises in energy conservation and emission reduction[J]. Journal of Peking University, 2010, 46(3): 465-470.
[8]
金红光. 化学能与物理能综合梯级利用原理[J]. 中国科学:技术科学2005, 35(3): 299-313.
JIN Hongguang. Chemical energy and physical energy comprehensive utilization principle[J]. Chinese Science, 2005, 35(3): 299-313.
[9]
CHANG H, WAN Z, ZHENG Y, et al. Energy analysis of a hybrid PEMFC-solar energy residential micro-CCHP system combined with an organic Rankine cycle and vapor compression cycle[J]. Energy Conversion & Management, 2017, 142: 374-384.
[10]
丁攀宋伟奇刘颖志,等. 浅述节温器的发展[J]. 科技资讯2012(36): 56-57.
DING Pan, SONG Weiqi, LIU Yingzhi, et al. Discussion on the thermostat's development[J]. Science&Technology Information. 2012(36): 56-57.

编辑: 谷子
PDF(6655 KB)

Accesses

Citation

Detail

段落导航
相关文章

/