基于支路开断分布因子的线路状态脆弱性研究

陈益超, 林涛, 程军照, 毕如玉, 李水天

分布式能源 ›› 2018, Vol. 3 ›› Issue (5) : 11-15.

PDF(780 KB)
PDF(780 KB)
分布式能源 ›› 2018, Vol. 3 ›› Issue (5) : 11-15. DOI: 10.16513/j.cnki.10-1427/tk.2018.05.002

基于支路开断分布因子的线路状态脆弱性研究

作者信息 +

Line State Vulnerability Based on Line Outage Distribution Factor

Author information +
文章历史 +

摘要

脆弱性反应了电力系统故障发生时抵御连锁故障的能力。电力系统N-1后发生潮流转移,系统潮流重新分配使得系统网架部分线路潮流突然增大,可能导致连锁故障和大面积停电情况的发生,如何预防电力系统线路在N-1后可能发生连锁故障的情况显得十分必要。从脆弱性角度出发,对电力系统线路进行脆弱性分析。首先计算得到各条支路的开断分布因子,在此基础上提出线路状态脆弱性指标和计算方法,得到各条支路的状态脆弱性评估结果,从数值上直观分析某条线路承受故障的能力和该线路开断对其他线路潮流的影响。最后以IEEE-39节点系统为例,通过计算各条支路的状态脆弱性指标,验证该方法的可行性以及对预防连锁故障的指导意义。

Abstract

Vulnerability reflects the ability to withstand cascading failures in the event of a power system failure. The power flow occurs after the power system N-1, and the system power flow redistribution increases the power flow of the system grid part, which may lead to cascading failure and large-area power outages. How to prevent the cascading failure of the system line after N-1 is necessary. From the perspective of vulnerability, this paper analyzes the vulnerability of power system lines; first of all, calculates the outage distribution factor of each branch. Based on this, the line state vulnerability index and calculation method are proposed, and the state vulnerability assessment results of each branch are obtained. Then, this paper visually analyzes the ability of a line to withstand faults and the impact of the line breaking on other line currents. Finally, the IEEE-39 node system is taken as an example to verify the feasibility of the method and the guiding significance of preventing cascading failure by calculating the state vulnerability index of each branch.

关键词

电力系统 / N-1 / 支路开断分布因子 / 状态脆弱性

Key words

power system / N-1 / line outage distribution factor / state vulnerability

引用本文

导出引用
益超, , 军照, . 基于支路开断分布因子的线路状态脆弱性研究[J]. 分布式能源. 2018, 3(5): 11-15 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.05.002
Yichao CHEN, Tao LIN, Junzhao CHENG, et al. Line State Vulnerability Based on Line Outage Distribution Factor[J]. Distributed Energy Resources. 2018, 3(5): 11-15 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.05.002
中图分类号: TK 01   

参考文献

[1]
林涛范杏元徐遐龄. 电力系统脆弱性评估方法研究综述[J]. 电力科学与技术学报2010, 25(4): 20-24.
LIN Tao, FAN Xingyuan, XU Xialing. Summary of power system vulnerability assessment methods[J]. Journal of Electric Power Science and Technology, 2010, 25(4): 20-24.
[2]
谢春瑰方菲吕项羽,等. 电网脆弱性评估方法研究[J]. 电网与清洁能源2013, 29(5): 35-38.
XIE Chungui, FANG Fei, Xiangyu, et al. Research on power grid vulnerability assessment methods[J]. Power System and Clean Energy, 2013, 29(5): 35-38.
[3]
ZHANG Kan, JIANG Fei, NIU Yunyun, et al. Structural vulnerability analysis in complex networks based on core theory[C]//IEEE International Conference on Data Science in Cyberspace(DSC), Changsha, China, 2016.
[4]
丁少倩林涛翟学,等. 基于短路容量的含大规模新能源接入的电网状态脆弱性评估方法研究[J]. 电力系统保护与控制2016, 44(13): 40-47.
DING Shaoqian, LIN Tao, ZHAI Xue, et al. Research on evaluation method of grid state vulnerability based on short-circuit capacity and large-scale new energy access[J]. Power System Protection and Control, 2016, 44(13): 40-47.
[5]
张彦琪林涛毕如玉,等. 新能源电源出力变化对电网结构脆弱性影响分析及应对[J]. 分布式能源2017, 2(5): 36-40.
ZHANG Yanqi, LIN Tao, BI Ruyu, et al. Analysis and response of the impact of new energy sources' output change on power system vulnerability[J]. Distributed Energy, 2017, 2(5): 36-40.
[6]
印永华郭剑波赵建军,等. 美加“8. 14”大停电事故初步分析以及应吸取的教训[J]. 电网技术2003, 27(10): 8-10, 16.
YING Yonghua, GUO Jianbo, ZHAO Jianjun, et al. Preliminary analysis and the lessons to be learned of the “8.14” blackouts in the United States and Canada[J]. Power System Technology, 2003, 27(10): 8-10, 16.
[7]
汤涌卜广全易俊. 印度“7. 30”、“7. 31”大停电事故分析及启示[J]. 中国电机工程学报2012, 32(25): 167-174.
TANG Yong, BU Guangquan, YI Jun. Analysis and enlightenment of India's “7·30” and “7·31” power blackout accidents[J]. Proceedings of the CSEE, 2012, 32(25): 167-174.
[8]
陈祎郭瑞鹏叶琳,等. 电网断面热稳定限额计算模型及方法[J]. 电力系统自动化2012, 36(17): 20-24.
CHEN Yi, GUO Ruipeng, YE Lin, et al. Calculation model and method for thermal stability limit of power grid section[J]. Automation of Electric Power Systems, 2012, 36(17): 20-24.
[9]
徐慧明毕天姝黄少锋,等. 基于潮流转移因子的广域后备保护方案[J]. 电网技术2006, 30(15): 65-71.
XU Huiming, BI Tianshu, HUANG Shaofeng, et al. Wide-area backup protection scheme based on power flow transfer factor[J]. Power System Technology, 2006, 30(15): 65-71.
[10]
徐慧明毕天姝黄少锋,等. 计及暂态过程的多支路切除潮流转移识别算法研究[J]. 中国电机工程学报2007, 27(6): 24-30.
XU Huiming, BI Tianshu, HUANG Shaofeng, et al. Multi-branch resection flow transfer identification algorithm considering transient process[J]. Proceedings of the CSEE, 2007, 27(6): 24-30.
[11]
袁晓丹张会强. 多支路开断潮流转移识别及防连锁过载策略研究[J]. 现代电力2014, 31(5): 74-79.
YUAN Xiaodan, ZHANG Huiqiang. Study on power flow transferring identification of milti-line tripping and the strategy to prevent cascading overload strategy[J]. Modern Electric Power, 2014, 31(5): 74-79.
[12]
任建文李莎严敏敏,等. 基于潮流跟踪算法的线路过负荷紧急控制策略[J]. 电网技术2013, 37(2): 392-397.
REN Jianwen, LI Sha, YAN Minmin, et al. Emergency control strategy for line overload based on power flow tracing algorithm[J]. Power System Technology, 2013, 37(2): 392-397.
[13]
李响郭志忠. N-1静态安全潮流约束下的输电断面有功潮流控制[J]. 电网技术2005, 29(3): 29-32.
LI Xiang, GUO Zhizhong. Power flow at cross-section of transmission line and its control under N-1 static state secure power flow restraint[J]. Power System Technology, 2005, 29(3): 29-32.
[14]
赵峰孙宏斌张伯明. 基于电气分区的输电断面及其自动发现[J]. 电力系统自动化2011, 35(5): 42-46.
ZHAO Feng, SUN Hongbin, ZHANG Boming. Transmission section based on electrical partition and its automatic discovery[J]. Automation of Electric Power Systems, 2011, 35(5): 42-46.
[15]
李立德林韩蔡金锭,等. 基于支路开断分布因子的严重故障筛选[J]. 电力与电工2013, 33(2): 15-18.
LI Lide, LIN Han, CAI Jinding, et al. Serious fault filtering based on line outage distribution factor[J]. Electric Power & Electrical Engineering, 2013, 33(2): 15-18.

编辑:
PDF(780 KB)

Accesses

Citation

Detail

段落导航
相关文章

/