风电并网系统次同步振荡建模与分析

田军, 张闻一, 王玉鹏, 林忠茂, 杨平健, 秦英炜, 赵才博, 张师

分布式能源 ›› 2018, Vol. 3 ›› Issue (5) : 22-27.

PDF(867 KB)
PDF(867 KB)
分布式能源 ›› 2018, Vol. 3 ›› Issue (5) : 22-27. DOI: 10.16513/j.cnki.10-1427/tk.2018.05.004

风电并网系统次同步振荡建模与分析

作者信息 +

Modeling and Analysis of Sub-Synchronous Oscillation in Wind Power Grid Connection System

Author information +
文章历史 +

摘要

随着风电串补技术在国内的大量应用,也暴露出其存在的安全问题。河北沽源、新疆哈密等地均发生多起次同步振荡事件,导致系统无法安全稳定运行。针对双馈感应风机(double fed induction generator,DFIG)经串联补偿线路外送功率引起的次同步振荡(sub-synchronous oscillation,SSO)问题,建立数学模型;并基于PSCAD搭建仿真模型,分析风电并网系统的SSO影响因素。通过分析可知:风速越小,串补度越高,就越容易发生次同步振荡;在串补度越高的情况下,次同步振荡频率越大,电气阻尼系数越低;转子侧变换器电流内环的比例系数和积分系数越大,产生的次同步控制互作用(sub-synchronous control interaction,SSCI)就越剧烈,对次同步振荡产生影响越大。

Abstract

With the extensive application of wind power series compensation technology in China, it also exposes the existing safety problems. There are many sub-synchronous oscillation (SSO) events in places such as Guyuan in Hebei and Hami in Xinjiang, which lead to the system can not operating safely and stably. In this paper, a mathematical model is established to solve the SSO problem caused by the outputting power of double fed induction generator (DFIG) through a series compensation line, and the simulation model based on PSCAD is built to analyze the influencing factors of SSO in wind power grid connection system. The analysis shows that, the smaller the wind speed is, the higher the degree of series compensation is, the easier the sub-synchronous oscillation is; when the degree of series compensation is high, the higher the frequency of sub-synchronous oscillation is, the lower the electrical damping coefficient is. The larger the ratio coefficient and integral coefficient of the current inner loop of the rotor-side converter is, the more intense the sub-synchronous control interaction (SSCI) will be and the greater the influence on the SSO will be.

关键词

风电机组 / 次同步振荡 / 串补度 / 阻尼系数

Key words

wind turbine / sub-synchronous oscillation / series compensation / damping coefficient

引用本文

导出引用
, 闻一, 玉鹏, . 风电并网系统次同步振荡建模与分析[J]. 分布式能源. 2018, 3(5): 22-27 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.05.004
Jun TIAN, Wenyi ZHANG, Yupeng WANG, et al. Modeling and Analysis of Sub-Synchronous Oscillation in Wind Power Grid Connection System[J]. Distributed Energy Resources. 2018, 3(5): 22-27 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.05.004
中图分类号: TK 89   

参考文献

[1]
AL-MAAMARY H M S, KAZEM H A, CHAICHAN M T. Renewable energy and GCC States energy challenges in the 21st century: a review[J]. International Journal of Computation & Applied Sciences, 2017, 2(1): 11-18.
[2]
WU M, XIE L, CHENG L, et al. A study on the impact of wind farm spatial distribution on power system sub-synchronous oscillations[J]. IEEE Transactions on Power Systems, 2016, 31(3): 2154-2162.
[3]
BRUNNSCHWEILER C N. Finance for renewable energy: an empirical analysis of developing and transition economies[J]. Environment & Development Economics, 2017, 15(3): 241-274.
[4]
THENATHAYALAN D, AHMED A, CHOI B M, et al. Independent MPP tracking method of hybrid solar-wind power conditioning systems using integrated dual-input single-PWM-cell converter topology[J]. Journal of Electrical Engineering & Technology, 2017, 12(2): 790-802.
[5]
IRWIN G D, JINDAL A K, ISAACS A L. Sub-synchronous control interactions between type 3 wind turbines and series compensated AC transmission systems[C]//Power and Energy Society General Meeting. Michigan: IEEE, 2011: 1-6.
[6]
王波. 含双馈机组风电场次同步振荡分析与抑制[D]. 重庆:重庆大学,2013.
WANG Bo. Analysis and suppression of sub-synchronous oscillation of wind farm with doubly-fed generator[D]. Chongqing: Chongqing University, 2013.
[7]
SURIYAARACHCHI D H R, ANNAKKAGE U D, KARAWITA C, et al. A procedure to study sub-synchronous interactions in wind integrated power systems[J]. IEEE Transactions on Power Systems, 2013, 28(1): 377-384.
[8]
WANG L, XIE X, JIANG Q, et al. Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2772-2779.
[9]
张师于锡平秦英炜,等. 风电接入位置对系统暂态稳定性的影响分析[J]. 分布式能源2017, 2(6): 78-81.
ZHANG Shi, YU Xiping, QIN Yingwei, et al. Influence of wind power access location on system transient stability[J]. Distributed Energy, 2017, 2(6): 78-81.
[10]
OSTADI A, YAZDANI A, VARMA R K. Modeling and stability analysis of a DFIG-based wind-power generator interfaced with a series-compensated line[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1504-1514.
[11]
栗然卢云刘会兰,等. 双馈风电场经串补并网引起次同步振荡机理分析[J]. 电网技术2013, 37(11): 3073-3079.
LI Ran, LU Yun, LIU Huilan, et al. Mechanism analysis on subsynchronous oscillation caused by grid-integration of doubly fed wind power generation system via series compensation[J]. Power System Technology, 2013, 37 (11): 3073-3079.
[12]
SAHNI M, BADRZADEH B, MUTHUMUNI D, et al. Sub-synchronous interaction in wind power plants-part Ⅱ:an ercot case study[C]//Power and Energy Society General Meeting. California: IEEE, 2012: 1-9.
[13]
MA H T, BROGAN P B, JENSEN K H, et al. Sub-synchronous control interaction studies between full-converter wind turbines and series-compensated ac transmission lines[C]//Power and Energy Society General Meeting. California: IEEE, 2012: 1-5.

编辑:
PDF(867 KB)

Accesses

Citation

Detail

段落导航
相关文章

/