风电场精细化微观选址技术的创新应用

李斌

分布式能源 ›› 2018, Vol. 3 ›› Issue (5) : 59-64.

PDF(33542 KB)
PDF(33542 KB)
分布式能源 ›› 2018, Vol. 3 ›› Issue (5) : 59-64. DOI: 10.16513/j.cnki.10-1427/tk.2018.05.010

风电场精细化微观选址技术的创新应用

作者信息 +

Innovative Application of Refined Microcosmic Site Selection of Wind Farm

Author information +
文章历史 +

摘要

部分风电项目存在盈利能力较低和建设条件受限的制约问题,为此深入分析风电项目开发建设面临的严峻形势,提出将精细化微观选址技术创新应用在风电项目前期开发领域,以加强科学选址论证、边界条件核实、发电效益测算等方式促进项目建设前期各项专题要件推进,深入排查核准过程中的各项限制因素,将风电项目的快速扩张转变为精细化发展,最终促使各风电场微观选址和优化设计更加精益求精,降低内部损耗,以高质量、高标准、高收益的前期项目创新核准,奠基工程建设环节建设优质高效精品风电场。

Abstract

Some wind power projects still have severe problems of low profitability and constrained construction conditions. This paper analyzes the severe situation faced by the development and construction of wind power projects, and suggests that fine micro-location technology innovation should be applied in the early development of wind power projects, so as to promote the advance of the special requirements in the early stage of the project construction by strengthening the scientific location demonstration, verifying the boundary conditions, and calculating the power generation benefits. Thorough the deep investigation and verification of various restrictive factors in the process, we change the rapid expansion of wind power projects into fine development and ultimately promote the microcosmic site selection and optimization design of wind farms to be more refined. We reduce internal losses, implement the high-quality, high-standard, high-yielding pre-project innovation and approval to lay the foundation for construction links and build high-quality and high-efficiency wind farms.

关键词

风电场 / 选址 / 精细化 / 规划

Key words

wind farm / site selection / refinement / planning

引用本文

导出引用
. 风电场精细化微观选址技术的创新应用[J]. 分布式能源. 2018, 3(5): 59-64 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.05.010
Bin LI. Innovative Application of Refined Microcosmic Site Selection of Wind Farm[J]. Distributed Energy Resources. 2018, 3(5): 59-64 https://doi.org/10.16513/j.cnki.10-1427/tk.2018.05.010
中图分类号: TK 81   

参考文献

[1]
秦海岩. 现阶段我国风电行业面临的主要问题综述[J]. 风能2012, 3(12): 58-61.
[2]
刘院昌余志. 基于参考风电机组的风电场宏观选址资源评估方法[J]. 太阳能学报2010, 31(11): 1516-1520.
LIU Yuanchang, YU Zhi. Methodology of wind resource assessment in wind farm macro-siting based on reference wind turbine[J]. Acta Energiae Solaris Sinica, 2010, 31(11): 1516-1520.
[3]
王贇. 浅谈风电场微观选址设计[J]. 湖北水力发电2017, 31(7): 73-75.
WANG Yun. Discussion on the microscopic site selection for wind power farms[J]. Hubei Water Power, 2017, 31(7): 73-75.
[4]
刘超盛科杨佳元. 风电场机组选型与微观选址优化研究[J]. 风能2014(8): 62-65.
[5]
张小雷高崇伦吴爱国. 大型风电场运行分析[J]. 风能2013(4): 66-70.
[6]
郭辰. 风电场平均风速变化对利用小时数的影响研究[J]. 风能2012(7): 50-59.
[7]
李斌张海超白雪峰. 大型风电场测风数据全生命周期的探讨[J]. 分布式能源2017, 2(4): 23-29.
LI Bin, ZHANG Haichao, BAI Xuefeng. Research and application of large data technology to enhance power generation of wind farm[J]. Distributed Energy, 2017, 2(4): 23-29.
[8]
曾杰陈晓科. 考虑测风数据缺失的短期风电功率预测算法[J]. 可再生能源2017, 35(2): 298-303.
ZENG Jie, CHEN Xiaoke. Short-term wind power prediction algorithm considering missing wind measurement data[J]. Renewable Energy, 2017, 35(2): 298-303.
[9]
刘苏云王笛蒋丹. 基于场景概率的风电机组的选址和定容[J]. 电气自动化2014, 36(5): 38-40.
LIU Sunyun, WANG Di, JIANG Dan. Scenario probability-based siting and sizing of wind turbine generators[J]. Electrical Automation, 2014, 36(5): 38-40.
[10]
高煜坤李杨王辉. 浅谈风电项目环评影响评价中风电场选址的论证条件[J]. 资源节约与环保2014, 32(4): 22-23.
[11]
仲炜葛莹张杰. 基于GIS的高海拔山区风电场智能微观选址研究[J]. 地理信息世界2018, 16(1): 130-134.
ZHONG Wei, GE Ying, ZHANG Jie. Research of intelligent micro-site selection of wind farm in high altitude mountainous areas based on GIS[J]. Geomatics World, 2018, 16(1): 130-134.
[12]
彭秀芳李剑峰. 地形粗糙度范围对风电场计算的影响[J]. 电力勘察设计2012, 19(4): 70-73.
[13]
李斌张海超白雪峰. 低风速风电场资源开发的研究及实际应用[J]. 分布式能源2017, 2(2): 10-16.
LI Bin, ZHANG Haichao, BAI Xuefeng. Research and application of low wind speed wind farm[J]. Distributed Energy, 2017, 2(2): 10-16.
[14]
张清清李海波李品. 低风速风电场风资源开发分析[J]. 西北水电2014, 27(2): 93-95.

编辑: 毅恒
PDF(33542 KB)

Accesses

Citation

Detail

段落导航
相关文章

/