Please wait a minute...
分布式能源  2018, Vol. 3 Issue (6): 38-46    DOI: 10.16513/j.cnki.10-1427/tk.2018.06.006
  有源配电网优化规划 本期目录 | 过刊浏览 |
基于小波分解的超短期风速混合模型组合预测
郑若楠
中国大唐集团有限公司科技与信息化部,北京 西城 100033
Combination Prediction Method of Ultra-Short-Term Wind Speed by Using A Hybrid Model Based on Wavelet Decomposition
ZHENG Ruonan
Science and Technology & IT Department, China Datang Corporation Co., Ltd., Xicheng District, Beijing 100033, China
全文: PDF(1955 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

针对目前超短期风速间接预测方法在各频率序列均采用同一模型进行预测所带来的问题,提出了一种基于小波分解的超短期风速混合模型组合预测方法。基于自回归差分移动平均模型,反向传播(back propagation, BP)神经网络与支持向量机三种方法,针对小波分解后所得到的各频率序列特点,选取合适的方法并建立相应的模型对其进行预测,最后重构得到超短期风速预测结果。该方法可从根本上考虑实测风速序列分解后所得各频率序列间的差异性和可预测性,进而提高预测精度。所提方法在不同预测时长下均具有较高的预测精度。以平均绝对误差为预测精度评价指标时,与持续法相比,预测精度可提高64.2%(1 h预测时长)、61.4%(4 h预测时长);与传统单一模型组合预测方法中预测误差最低方法相比,预测精度可提高7.2%(1 h预测时长)、5.7%(4 h预测时长)。

关键词: 超短期风速预测混合模型组合预测小波分解间接预测    
Abstract

Aiming at the problems caused by the current indirect methods for ultra-short-term wind speed prediction which used the same model for each frequency sequence, this paper proposed a combined ultra-short-term wind speed prediction method using a hybrid model based on wavelet decomposition. The proposed method is based on three basic methods, which are autoregressive differential moving average model, back propagation (BP) neural network and support vector machine. The appropriate method is selected and the corresponding model is created according to the characteristics of each frequency sequence after wavelet decomposition, then the results of ultra-short-term wind speed prediction can be obtained through wavelet reconstruction. The proposed method can consider the difference and predictability among each frequency sequence fundamentally, therefore the prediction accuracy can be improved. The proposed method has higher prediction accuracy under different time horizons. When mean absolute error is used as the evaluation index, the prediction accuracy of the proposed method can be improved by 64.2% and 61.4% under 1 h and 4 h time horizons respectively compared with the persistence method, 7.2% and 5.7% under 1 h and 4 h time horizons respectively compared with the minimum prediction error method in traditional single model combination prediction method.

Key Wordsultra-short-term wind speed predictionhybrid modelcombination predictionwavelet decompositionindirect prediction
收稿日期: 2018-08-18

引用本文:

郑若楠. 基于小波分解的超短期风速混合模型组合预测[J]. 分布式能源, 2018, 3(6): 38-46.
ZHENG Ruonan. Combination Prediction Method of Ultra-Short-Term Wind Speed by Using A Hybrid Model Based on Wavelet Decomposition[J]. Distributed Energy, 2018, 3(6): 38-46.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.cnki.10-1427/tk.2018.06.006      或      http://der.tsinghuajournals.com/CN/Y2018/V3/I6/38

图1  小波分解与重构过程示意图
图2  BPNN拓扑结构图
图3  超短期风速混合模型组合预测流程图
表1  持续法与直接预测法预测结果(1 h预测时长)
图4  在不同分解层数下各种预测方法的预测精度(1 h预测时长)
表2  在最佳小波分解层数下各种风速预测方法的预测精度(1 h预测时长)
图5  在最佳小波分解层数下各种风速预测方法的预测精度月变化曲线(1 h预测时长)
表3  持续法与直接预测法预测结果(4 h预测时长)
表4  在最佳小波分解层数下各种风速预测方法的预测精度(4 h预测时长)
图6  在不同分解层数下各种预测方法的预测精度(4 h预测时长)
图7  在最佳小波分解层数下各种风速预测方法的预测精度月变化曲线(4 h预测时长)
[1] 国家能源局. 风电发展“十三五”规划[EB/OL]. [2016-11].
[2] REN Guorui, LIU Jinfu, WAN Jie, et al. Overview of wind power intermittency: impacts, measure-ments, and mitigation solutions[J]. Applied Energy, 2017, 204: 47-65.
[3] XUE Yusheng, YU Chen, ZHAO Junhua, et al. A review on short-term and ultra-short-term wind power prediction[J]. Automation of Electric Power Systems, 2015, 39(6): 141-151.
[3] 薛禹胜,郁琛,赵俊华,等. 关于短期及超短期风电功率预测的评述[J]. 电力系统自动化,2015, 39(6): 141-151.
[4] JIANG Yuewen, WEN Buying. Real-time market dispatch based on ultra-short-term forecast error of wind power[J]. Electric Power Automation Equipment, 2015, 35(3): 12-17.
[4] 江岳文,温步瀛. 结合风电功率超短期预测值偏差的实时市场调度[J]. 电力自动化设备,2015, 35(3): 12-17.
[5] KANG Li. Complex terrain wind farm super short term wind resources prediction research[D]. Hohhot: Inner Mongolia University of Technology, 2017.
[5] 康丽. 复杂地形风电场超短期风资源预测研究[D]. 呼和浩特:内蒙古工业大学,2017.
[6] KAVASSERI R G, SEETHARAMAN K. Day-ahead wind speed forecasting using f-ARIMA models[J]. Renewable Energy, 2009, 34(5): 1388-1393.
[7] GEORGE G, EVGENIA P, ARISTOTELIS L. A hybrid bayesian kalman filter and applications to numerical wind speed modeling[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167: 1-22.
[8] HAN Shuang, MENG Hang, LIU Yongqian, et al. Study on optimization of BP neural network wind power prediction model with two hidden layers[J]. Acta Energiae Solaris Sinica, 2015, 36(9): 2238-2244.
[8] 韩爽,孟航,刘永前,等. 增量处理双隐层BP神经网络风电功率预测模型[J]. 太阳能学报,2015, 36(9): 2238-2244.
[9] üMMüHAN B, TANSU F. Wind speed prediction using artificial neural networks based on multiple local measurements in Eskisehir[J]. Energy Procedia, 2017, 107: 264-269.
[10] WANG Han, YAN Jie, LIU Yongqian, et al. Multi-step-ahead method for wind speed prediction correction based on numerical weather prediction and historical measurement data[C]//Wind Europe Conference and Exhibition 2017. Amsterdam, Netherlands. Netherlands Wind Energy Association(NWEA), 2017: 012007.
[11] HAN Zhonghe, LI Qiuju, YUAN Yiming, et al. RVM based short-term wind speed prediction model[J]. Journal of Electric Power Science and Technology, 2017, 32(3): 38-42.
[11] 韩中合,李秋菊,苑一鸣,等. 基于相关向量机的短期风速预测模型[J]. 电力科学与技术学报,2017, 32(3): 38-42.
[12] DING Teng, FENG Donghan, LIN Xiaofan, et al. Ultra-short-term wind speed forecasting based on improved ARIMA-GARCH model[J]. Power System Technology, 2017, 41(6): 1808-1814.
[12] 丁藤,冯冬涵,林晓凡,等. 基于修正后ARIMA-GARCH模型的超短期风速预测[J]. 电网技术,2017, 41(6): 1808-1814.
[13] JIANG P, WANG Y, WANG J. Short-term wind speed forecasting using a hybrid model[J]. Energy, 2016, 119: 561-577.
[14] LIU H, TIAN H Q, PAN D F, et al. Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks[J]. Applied Energy, 2013, 107(4): 191-208.
[15] GAO Yang, ZHONG Hongyu, CHEN Xinyu, et al. Ultra short term wind speed forecasting based on neural network and wavelet analysis[J]. Renewable Energy Resources, 2016, 34(5): 705-711.
[15] 高阳,钟宏宇,陈鑫宇,等. 基于神经网络和小波分析的超短期风速预测[J]. 可再生能源,2016, 34(5): 705-711.
[16] SHI Tong, YANG Shuo. Short-term prediction of wind power based on EEMD-Optimal-ELM algorithm[J]. Distributed Energy, 2018, 3(3): 22-27.
[16] 时彤,杨朔. 基于EEMD-BBO-ELM的短期风电功率预测方法[J]. 分布式能源,2018, 3(3): 22-27.
[17] ZHANG Yan, HAN Pu, WANG Dongfeng, et al. Short-termprediction of wind speed for wind farm based on variational mode decomposition and LSSVM model[J]. Acta Energiae Solaris Sinica, 2018, 39(1): 194-202.
[17] 张妍,韩璞,王东风,等. 基于变分模态分解和LSSVM的风电场短期风速预测[J]. 太阳能学报,2018, 39(1): 194-202.