分布式能源技术与发展现状

国旭涛, 蔡洁聪, 韩高岩, 谢娜, 吕洪坤

分布式能源 ›› 2019, Vol. 4 ›› Issue (1) : 52-59.

PDF(1528 KB)
PDF(1528 KB)
分布式能源 ›› 2019, Vol. 4 ›› Issue (1) : 52-59. DOI: 10.16513/j.cnki.10-1427/tk.2019.01.010
应用技术

分布式能源技术与发展现状

作者信息 +

Technologies and Development Status for Distributed Energy Resources

Author information +
文章历史 +

摘要

分布式能源具有能源利用效率高、环保、可靠性高的优点,是实现能源可持续发展的关键。将分布式能源分为热电联产、可再生能源、储能和燃料电池四大类,从技术原理和发展现状两个方面对其进行讨论。另外,分布式能源追求能源、环境和经济三者的效益最大化,而影响用户选择分布式能源的主要因素是经济性。

Abstract

Distributed energy resources (DERs) is key to sustainable development of energy, which has the advantages of high energy efficiency, environmental protection and high reliability. This paper dividing DERs into four types: combined heat and power, renewable energy, energy storage and fuel cells and discusses it from two aspects: technical principle and development. In general, DERs seek to maximize the benefits of energy, environment and economy. But the main factor affecting users' choice of distributed energy is economy.

关键词

分布式能源 / 能源效率 / 经济性

Key words

distributed energy resources / energy efficiency / economy

引用本文

导出引用
国旭涛, 蔡洁聪, 韩高岩, . 分布式能源技术与发展现状[J]. 分布式能源. 2019, 4(1): 52-59 https://doi.org/10.16513/j.cnki.10-1427/tk.2019.01.010
Xutao GUO, Jiecong CAI, Gaoyan HAN, et al. Technologies and Development Status for Distributed Energy Resources[J]. Distributed Energy Resources. 2019, 4(1): 52-59 https://doi.org/10.16513/j.cnki.10-1427/tk.2019.01.010

参考文献

[1]
IBRAHIM O, FARDOUN F, YOUNES R, et al. Review of water-heating systems: General selection approach based on energy and environmental aspects[J]. Build and Environment, 2014, 72: 259-286.
[2]
IBRAHIM O, FARDOUN F, YOUNES R, et al. Multivariable optimization for future electricity-plan scenarios in Lebanon[J]. Energy Policy, 2013, 58: 49-56.
[3]
FARDOUN F, IBRAHIM O, YOUNES R, et al. Electricity of lebanon: Problems and recommendations[J]. Energy Procedia, 2012, 19: 310-320.
[4]
IBRAHIM O, FARDOUN F, YOUNES R, et al. Energy status in Lebanon and electricity generation reform plan based on cost and pollution optimization[J]. Renewable and Sustainable Energy Reviews, 2013, 20: 255-278.
[5]
AL-SULAIMAN F A, DINCER I, HAMDULLAHPUR F. Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle[J]. International Journal of Hydrogen Energy, 2010, 35(10): 5104-5113.
[6]
WU D W, WANG R Z. Combined cooling, heating and power: A review[J]. Progress in Energy and Combustion Science, 2006, 32(5-6): 459-495.
[7]
JABLKO R, SANITER C, HANITSCH R, et al. Technical and economical comparison of micro CHP systems[C]//2005 International Conference on Future Power Systems. Amsterdam: IEEE, 2005: 1-6.
[8]
United Nations Economic and Social Commission for Asia and the Pacific. Guidebook on cogeneration as a means of pollution control and energy efficiency in Asia[M]. New York: United Nations publication, 2000.
[9]
AL MOUSSAWI H, FARDOUN F, LOUAHLIA-GUALOUS H. Review of tri-generation technologies: Design evaluation, optimization, decision-making, and selection approach[J]. Energy Conversion and Management, 2016, 120: 157-196.
[10]
AL MOUSSAWI H, FARDOUN F, LOUAHLIA H. Selection based on differences between cogeneration and trigeneration in various prime mover technologies[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 491-511.
[11]
林世平,李先瑞,陈斌. 燃气冷热电分布式能源技术应用手册[M]. 北京:中国电力出版社. 2014.
[12]
WANG Z, HAN W, ZHANG N, et al. Assessment of off-design performance of a combined cooling, heating and power system using exergoeconomic analysis[J]. Energy Conversion and Management, 2018, 171: 188-195.
[13]
ÜNAL A N, ERCAN S, KAYAKUTLU G. Optimization studies on trigeneration: A review[J]. International Journal of Energy Research, 2015, 39(10): 1311-1334.
[14]
清华大学建筑节能研究中心,国际能源署. 中国区域清洁供暖发展研究报告[R]. 巴黎:国际能源署,2018.
[15]
国务院. 国务院关于印发大气污染防治行动计划的通知[EB/OL]. (20130912)[20190126].
[16]
BP Global Energy. BP statistical review of 2018 world energy[R]. BP Global Energy, 2018 (67): 1-53.
[17]
ZHANG Yuanwei, GUO Xiao, WANG Lingfei, et al. Experimental study of a new solar hybrid photovoltaic-thermal modules[J]. Renewable Energy Resources, 2018, 36(10): 1449-1454.
张远巍,郭枭,汪凌飞,等. 新型太阳能光伏光热一体化系统性能实验研究[J]. 可再生能源2018, 36(10): 1449-1454.
[18]
MA Minjie. Temporal and spatial distribution characteristics and development potential of global wind energy resource[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
马敏杰. 全球风能资源时空分布特征及开发潜力评价[D]. 成都:电子科技大学,2018.
[19]
HE G, KAMMEN D M. Where, when and how much wind is available—A provincial-scale wind resource assessment for China[J]. Energy Policy, 2014, 74: 116-122.
[20]
Global Wind Energy Council. Global wind report 2016[R]. Delhi: Global Wind Energy Council, 2017.
[21]
WANG Jinjin, JIN Guang, WANG Yuxing, et al. Feasibility analysis on distributed energy technology in Inner Mongolia[J]. Distributed Energy, 2018, 3(1): 50-57.
王瑾瑾,金光,王宇星,等. 分布式能源技术在内蒙古地区应用的可行性分析[J]. 分布式能源2018, 3(1): 50-57.
[22]
LAN Zhongcheng. Preliminary evaluation on the geographic distribution of wind energy resources and its development and utilization in China[D]. Lanzhou: Lanzhou University, 2015.
兰忠成. 中国风能资源的地理分布及风电开发利用初步评价[D]. 兰州:兰州大学,2015.
[23]
陈向国,汪集暘. 科学、理性迎接我国地热资源开发利用第二春[J]. 节能与环保2017(10): 16-17.
[24]
自然资源部中国地质调查局,再生能源司,中国科学院科技战略咨询研究院,国务院发展研究中心资源,环境政策研究所. 中国地热能发展报告(2018)[R]. 北京:自然资源部中国地质调查局,2018.
[25]
韩晓平. 实现“十三五”能源规划目标需推进能源革命[J]. 中国石油和化工2017(3): 32-32.
[26]
WANG Shuo, ZHOU Ge, YU Xiqian, et al. Overview of research papers and patents on energy storage technologies[J]. Energy Storage Science and Technology, 2017, 6(4): 810-838.
王朔,周格,禹习谦,等. 储能技术领域发表文章和专利概览综述[J]. 储能科学与技术2017, 6(4): 810-838.
[27]
封红丽. 2016年全球储能技术发展现状与展望[J]. 中国产业经济动态2016(19): 39-43.
[28]
WU Juan, LONG Xinfeng. Research status and prospects for thermochemical energy storage[J]. Modern Chemical Industry, 2014, 34(9): 17-21.
吴娟,龙新峰. 热化学储能的研究现状与发展前景[J]. 现代化工2014, 34(9): 17-21.
[29]
金红光,郑丹星,徐建中. 分布式冷热电联产系统装置及应用[M]. 北京:中国电力出版社. 2010.
[30]
WANG Jihua, JU Yusheng, YI Zhenggen, et al. Review on development and application of fuel cell technology (1)[J]. Modern Vehicle Power, 2018(2): 7-12, 39.
王吉华,居钰生,易正根,等. 燃料电池技术发展及应用现状综述(上)[J]. 现代车用动力2018(2): 7-12, 39.
[31]
YU Z, HAN J, CAO X, et al. Analysis of total energy system based on solid oxide fuel cell for combined cooling and power applications[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2703-2707.
[32]
AL-SULAIMAN F A, HAMDULLAHPUR F, DINCER I. Trigeneration: A comprehensive review based on prime movers[J]. International Journal of Energy Research, 2011, 35(3): 233-258.
[33]
尹祥,赵先勤,陈锦芳. 天然气分布式能源支持政策与经济敏感性分析[J]. 煤气与热力2017, 37(1): 31-35.
[34]
高传峰,朱佳斌,寿恩广. 燃气分布式能源主要经济评价指标及计算方法分析[J]. 科技与创新2018(18): 126-127.
[35]
HAN Zhonghe, QI Chao, XIANG Peng, et al. Benefit analysis and comprehensive evaluation for distributed energy system[J]. Thermal Power Generation, 2018, 47(2): 31-36.
韩中合,祁超,向鹏,等. 分布式能源系统效益分析及综合评价[J]. 热力发电2018, 47(2): 31-36.
[36]
ZOU Daoan, CHEN Jinyao, HUANG Qiwei, et al. Technical and economic research on building distributes energy systems[J]. Energy Engineering, 2017(3): 20-26, 48.
邹道安,陈金耀,黄琪薇,等. 楼宇型分布式能源系统技术经济研究[J]. 能源工程2017(3): 20-26, 48.
[37]
周灵宏. 浅谈分布式能源的冷热电联产系统[J]. 城市建设理论研究2013(36): 2095-2104.
[38]
左远志,杨晓西. 影响我国分布式能源发展的因素分析[J]. 天然气工业2007, 27(7): 121-123.
[39]
ZHAO Ziyan, WANG Can, PAN Chaoqiong, et al. Optimal operation of combined heating and power system with distributed renewable energy[J]. Distributed Energy, 2018, 3(4): 9-15.
赵子嫣,王灿,潘超琼,等. 含分布式新能源的热电联供系统运行优化[J]. 分布式能源2018, 3(4): 9-15.

编委: 蒋毅恒
PDF(1528 KB)

Accesses

Citation

Detail

段落导航
相关文章

/