多机电力系统中储能装置的选址方法对比分析

任宏宇,康积涛,钱琳

分布式能源 ›› 2019, Vol. 4 ›› Issue (2) : 23-29.

PDF(1927 KB)
PDF(1927 KB)
分布式能源 ›› 2019, Vol. 4 ›› Issue (2) : 23-29. DOI: 10.16513/j.cnki.10-1427/tk.2019.02.004
学术研究

多机电力系统中储能装置的选址方法对比分析

作者信息 +

Comparison and Analysis of Location Methods for Energy Storage Devices in Multi-Machine Power Systems

Author information +
文章历史 +

摘要

储能装置用于抑制低频振荡(low-frequency oscillator,LFO)具有响应速度快、可灵活调节有功和无功功率的显著特点,尤其是用于抑制区域间振荡模式时,但是多机系统中如何选择储能装置的安装位置从而更有效抑制低频振荡,是一个值得深入研究的问题。首先在电力系统分析综合程序PSASP中根据电池储能(battery energy storage system,BESS)的控制系统和模块接口部分建立电池储能的仿真模型;其次通过小干扰稳定分析计算系统状态矩阵及特征值,分析对比两种储能选址方法,即特征向量法和特征值灵敏度法,通过分析得出用特征值灵敏度法选址时准确性更好的原因;最后利用典型的两区域四机系统,分别求取特征向量及特征值灵敏度,验证了灵敏度法对于储能选址具有良好的适应性。

Abstract

Energy storage devices are used to suppress low-frequency oscillator (LFO) in power systems due to their fast response and flexible adjustment of active and reactive power, especially for inter-area oscillation mode. However, the determination of location of energy storage devices in multi-machine systems to suppress LFO more effectively is a question worthy of further study. Firstly, this paper establishes the simulation model of battery energy storage system (BESS) in the PSASP according to the control system and the interface part of the module. Secondly, the system state matrix and eigenvalues are calculated through the small signal stability analysis, and two methods of energy storage location, namely the eigenvector method and the eigenvalue sensitivity method, are compared, followed by the reason that the latter is more accurate. Finally, by a typical two-region four-machine system instance, the eigenvector and the eigenvalue sensitivity are respectively calculated to verify the sensitivity method owning a better adaptability for energy storage location.

关键词

电池储能(BESS) / 选址 / 特征值灵敏度

Key words

battery energy storage system (BESS) / optimal location / eigenvalue sensitivity

引用本文

导出引用
任宏宇, 康积涛, 钱琳. 多机电力系统中储能装置的选址方法对比分析[J]. 分布式能源. 2019, 4(2): 23-29 https://doi.org/10.16513/j.cnki.10-1427/tk.2019.02.004
Hongyu REN, Jitao KANG, Lin QIAN. Comparison and Analysis of Location Methods for Energy Storage Devices in Multi-Machine Power Systems[J]. Distributed Energy Resources. 2019, 4(2): 23-29 https://doi.org/10.16513/j.cnki.10-1427/tk.2019.02.004

参考文献

[1]
CHEN Xinghua, CHEN Jinchang, YANG Wenjia, et al. Coordination strategy for security and stability control measures and automatic switching-in measures for reserve power supply[J]. Guangdong Electric Power, 2016, 29(11): 110-113.
陈兴华,陈锦昌,杨文佳,等. 安全稳定控制措施与备用电源自动投入措施的协调策略[J]. 广东电力2016, 29(11): 110-113.
[2]
WU Mingzhe, CHEN Wuhui. Overview of research on stability and control of VSC-HVDC[J]. Power Generation Technology, 2019, 40(1): 28-39.
吴明哲,陈武晖. VSC-HVDC稳定控制研究[J]. 发电技术2019, 40(1): 28-39.
[3]
倪以信. 动态电力系统的理论与分析[M]. 北京:清华大学出版社,2002: 56-90.
[4]
LI Pengfei, ZHANG Yanchi, ZHANG Qian, et al. Optimal configuration of energy storage devices in distributed generation systems[J]. Distributed Energy, 2018, 3(6): 60-66.
李鹏飞,张延迟,张倩,等. 分布式发电系统中储能装置的优化配置[J]. 分布式能源2018, 3(6): 60-66.
[5]
HAN Xiaojuan, AI Yaoyao, LI Xiangjun. Application value of energy storage systems in the power grid and its commercial modes[J]. Power Generation Technology, 2018, 39(1): 77-83.
韩晓娟,艾瑶瑶,李相俊. 储能在电网中的应用价值及其商业模式[J]. 发电技术2018, 39(1): 77-83.
[6]
UEDA S, TAKEUCHI H, OHSAWA Y, et al. Studies on power system stabilization by distributed allocation of micro SMES units[C]//International Conference on Power System Technology. Kunming, China: IEEE, 2002: 1244-1248.
[7]
LI Y Z, WADA K, OHSAWA Y, et al. Optimal allocation of micro SMES units for power system stabilization by means of genetic algorithm[C]//International Conference on Power System Technology. Chongqing, China: IEEE, 2006: 1-6.
[8]
LEE S. Location of a superconducting device in a power grid for system loss minimization using loss sensitivity[J]. IEEE Trans. on Applied Superconductivity, 2007, 17(2): 2351-2354.
[9]
LI Yan, JING Panpan, WANG Li. A mathematical model of versatile energy storage system and its modeling by power system analysis[J]. Power System Technology, 2012, 36(1): 51-57.
李妍,荆盼盼,王丽,等. 通用储能系统数学模型及其PSASP建模研究[J]. 电网技术2012, 36(1): 51-57.
[10]
李木一. 基于PSASP的电池储能系统建模与仿真[C]//中国电机工程学会年会,成都,2013.
[11]
中国电力科学研究院. 电力系统分析综合程序(PSASP)用户手册[R]. 北京:中国电力科学研究院,2002.
[12]
NOLAN P J. Eigenvalue sensitivities of power systems including network and shaft dynamics[J]. IEEE Trans. on Power Apparatus and Systems, 1976, PAS-95(4): 1318-1324.
[13]
GUO Hongbin, YU Huijun, SHEN Guang. Configuration optimization of distributed energy system[J]. Distributed Energy, 2018, 3(4): 47-52.
郭洪宾,于惠钧,申广. 分布式能源系统配置优化[J]. 分布式能源2018, 3(4): 47-52.
[14]
SMED T. Feasible eigenvalue sensitivity for large power systems[J]. IEEE Trans. on Power Systems, 1993, 8(2): 555-563.
[15]
MIAO Fengxian, GUO Zhizhong. A survey of sensitivity technique and its application in power systems analysis and control[J]. Relay, 2007, 35(15): 72-76.
苗峰显,郭志忠. 灵敏度方法在电力系统分析与控制中的应用综述[J]. 继电器2007, 35(15): 72-76.
[16]
LIU Tao, SONG Xinli. Eigenvalue sensitivity and its application in power system small signal stability[J]. Power System Technology, 2010, 34(4): 82-87.
刘涛,宋新立. 特征值灵敏度方法及其在电力系统小干扰稳定分析中的应用[J]. 电网技术2010, 34(4): 82-87.
[17]
WENG Zuze. Selection of optimum locations for PSS installation in a multimachine system using eigenvector analysis[J]. Proceedings of the CSEE, 1982, 4(3): 20-29.
翁祖泽. 用特征分析法决定多机系统中稳定器的最佳安装地点[J]. 中国电机工程学报1982, 4(3): 20-29.
[18]
刘取. 电力系统稳定性及发电机励磁控制[M]. 北京:中国电力出版社,2007: 128-131.
[19]
WU Guohong, HE Jiali. An index for optimal location of FACTS device[J]. Automation of Electric Power Systems, 1998, 22(9): 57, 60.
吴国红,贺家李. FACTS装置最佳设置点的选择指标[J]. 电力系统自动化1998, 22(9): 57, 60.

基金

国家自然科学基金项目(51477143)

编委: 谷子
PDF(1927 KB)

Accesses

Citation

Detail

段落导航
相关文章

/