Please wait a minute...
分布式能源  2018, Vol. 3 Issue (2): 29-38    DOI: 10.16513/j.cnki.10-1427/tk.2018.02.005
  本期目录 | 过刊浏览 |
基于季风和大气压分布的我国风电功率预测研究
杨正瓴1(),刘仍祥2,李真真1
Survey on China Wind Power Prediction Based on Monsoons and Atmospheric Pressure Distribution
YANG Zhengling1,LIU Rengxiang2,LI Zhenzhen1
1.天津大学电气自动化与信息工程学院,天津 南开 300072
2.天津市过程检测与控制重点实验室(天津大学),天津 南开 300072
1. School of Electrical and Information Engineering, Tianjin University, Nankai District, Tianjin 300072, China
2. Key Laboratory of Process Measurement and Control (Tianjin University), Nankai District, Tianjin 300072, China
全文: PDF(50913 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

为提高我国超短期和短期风电功率预测的准确性和可靠性,首先回顾我国冬季风和夏季风的基本变化性质。我国东南沿海处在冬季风和夏季风的主要路径上,每年有超过7个月的时间具有超过2 000 km空间距离和超过20 h延迟时间的风速空间相关性。引起冬季风的蒙古高压,还控制着我国北部和西部的风能资源丰富区。尽管总体上我国天气预报难度超过欧美,但冬季风、夏季风及蒙古高压引起的空间相关性,使得这些区域风速等预报的精度具有明显提高的潜力,特别是台湾海峡区域具有高精度的超短期风速预报潜力。再采用力学中的刚体定轴转动定律等进行风速-功率曲线的精确求解,可望在我国东南沿海和北部的风能资源丰富区,通过空间相关性获得高性能的超短期、短期风电功率预测效果。

关键词: 风电功率预测短期超短期季风风速-功率曲线空间相关性    
Abstract

In order to improve the accuracy and reliability of China's ultra-short-term and short-term wind power prediction, the elementary characteristics of winter monsoon and summer monsoon in China are reviewed. China's southeast coastal area locates on the main path of the winter monsoon and the summer monsoon, where the wind speed spatial correlation exceeds 2000 km and lag time exceeds 20 h for more than 7 months every year. The Siberian High not only causes the winter monsoon, but also dominates wind energy resource-rich areas in north and west of China. Although the overall weather forecast in China is more difficult than that in Europe and the United States, the winter monsoon, the summer monsoon and the Siberian High make it possible potentially to improve wind speed prediction obviously in these areas by spatial correlation. In particular, the Taiwan Strait region has the obvious potential of high-precision ultra-short-term wind speed prediction. Then to exactly solve wind speed-power curve precisely by the law of rotation of rigid body round a fixed axis, it is expected to obtain the high-performance ultra-short-term and short-term wind power prediction in the wind energy resource-rich areas in north and west of China by spatial correlation.

Key Wordswind power predictionshort termultra short termmonsoonwind speed-power curvespatial correlation
收稿日期: 2017-12-25

引用本文:

杨正瓴,刘仍祥,李真真. 基于季风和大气压分布的我国风电功率预测研究[J]. 分布式能源, 2018, 3(2): 29-38.
YANG Zhengling,LIU Rengxiang,LI Zhenzhen. Survey on China Wind Power Prediction Based on Monsoons and Atmospheric Pressure Distribution[J]. Distributed Energy, 2018, 3(2): 29-38.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.cnki.10-1427/tk.2018.02.005      或      http://der.tsinghuajournals.com/CN/Y2018/V3/I2/29

图1  我国主要能源消费区、胡焕庸线与地势
图2  全球经典季风区和我国季风区
图3  全球近70 a的1、7月份月平均位势高度和地表矢量风速
图4  我国近70 a的1、7月份月平均地表矢量风速
图5  夏季风平均推进时间
表1  冬季风主要路径上一些地点之间的风速延迟时间
图6  冬季风时期北京对澳仔的交叉小波图
[1] 周孝信,曾嵘,高峰,等. 能源互联网的发展现状与展望[J]. 中国科学:信息科学,2017, 47(2): 149-170.
[1] ZHOU Xiaoxin, ZENG Rong, GAO Feng, et al. Development and prospect of energy internet[J]. Scientia Sinica Informationis,2017,47(2): 149-170.
[2] 余贻鑫,秦超. 智能电网基本理念阐释[J]. 中国科学:信息科学,2014, 44(6): 694-701.
[2] YU Yixin, QIN Chao. Expatiation on the basic ideas of smart grid[J]. Scientia Sinica Informationis, 2014, 44(6): 694-701.
[3] 查亚兵,张涛,黄卓,等. 能源互联网关键技术分析[J]. 中国科学:信息科学,2014, 44(6): 702-713.
[3] ZHA Yabing, ZHANG Tao, HUANG Zhuo, et al. Analysis of energy internet key technologies[J]. Scientia Sinica Informationis, 2014, 44(6): 702-713.
[4] 赵俊华,董朝阳,文福拴,等. 面向能源系统的数据科学:理论、技术与展望[J]. 电力系统自动化,2017, 41(4): 1-11, 19.
[4] ZHAO Junhua, DONG Zhaoyang, WEN Fushuan, et al. Data science for energy systems: theory, techniques and prospect [J]. Automation of Electric Power Systems, 2017, 41(4): 1-11, 19.
[5] 张小平,李佳宁,付灏. 全球能源互联网对话工业4.0[J]. 电网技术,2016, 40(6): 1607-1611.
[5] ZHANG Xiaoping, LI Jianing, FU Hao. Global energy interconnection dialogue industry 4.0[J]. Power System Tech-nology, 2016, 40(6): 1607-1611.
[6] 张国荣,陈夏冉. 能源互联网未来发展综述[J]. 电力自动化设备,2017, 37(1): 7-13.
[6] ZHANG Guorong, CHEN Xiaran. Future development of energy internet[J]. Electric Power Automation Equipment, 2017, 37(1): 7-13.
[7] SU W C, HUANG A Q. 美国的能源互联网与电力市场[J]. 科学通报,2016, 61(11): 1210-1221.
[7] SU W C, HUANG A Q. The energy internet and electricity market in the United States[J]. Chinese Science Bulletin, 2016, 61(11): 1210-1221.
[8] MONESS M, MOUSTAFA A M. A survey of cyber-physical advances and challenges of wind energy conversion systems: prospects for internet of energy[J]. IEEE Internet of Things Journal, 2016, 3(2): 134-145.
[9] KALYANARAMAN S. Back to the future lessons for Internet of energy networks[J]. IEEE Internet Computing, 2016, 20(1): 60-65.
[10] BUI N, CASTELLANI A, ASTELLANI A P, et al. The internet of energy: a web-enabled smart grid system[J]. IEEE Network, 2012, 26(4): 39-45.
[11] 包铭磊,丁一,邵常政. 国际能源系统转型对我国能源互联网建设的借鉴[J]. 分布式能源,2017, 2(2): 11-19.
[11] BAO Minglei, DING Yi, SHAO Changzheng. Reference of international energy system transformation to energy internet construction in China[J]. Distributed Energy, 2017, 2(2): 11-19.
[12] 薛禹胜,郁琛,赵俊华,等. 关于短期及超短期风电功率预测的评述[J]. 电力系统自动化,2015, 39(6): 141-151.
[12] XUE Yusheng, YU Chen, ZHAO Junhua, et al. A review on short-term and ultra-short-term wind power prediction[J]. Automation of Electric Power Systems, 2015, 39(6): 141-151.
[13] 薛禹胜,陈宁,王树民,等. 关于利用空间相关性预测风速的评述[J]. 电力系统自动化,2017, 41(10): 161-169.
[13] XUE Yusheng, CHEN Ning, WANG Shumin, et al. Review on wind speed prediction based on spatial correlation[J]. Automation of Electric Power Systems, 2017, 41(10): 161-169.
[14] 乔颖,鲁宗相,闵勇,等. 提高风电功率预测精度的方法[J]. 电网技术,2017, 41(10): 3161-3169.
[14] QIAO Ying, LU Zongxiang, MIN Yong, et al.Research & application of raising wind power prediction accuracy[J]. Power System Technology, 2017, 41(10): 3161-3169.
[15] HAGSPIEL S, PAPAEMANNOUIL A, SCHMID M, et al. Copula-based modeling of stochastic wind power in Europe and implications for the Swiss power grid[J]. Applied Energy, 2012, 96: 33-44.
[16] 薛禹胜,郁琛,赵俊华,等. 关于短期及超短期风电功率预测的评述[J]. 电力系统自动化,2015, 39(6): 141-151.
[16] XUE Yusheng, YU Chen, ZHAO Junhua, et al. A review on short-term and ultra-short-term wind power prediction[J]. Automation of Electric Power Systems, 2015, 39(6): 141-151.
[17] 丁华杰,宋永华,胡泽春,等. 基于风电场功率特性的日前风电预测误差概率分布研究[J]. 中国电机工程学报,2013, 33(34): 136-144.
[17] DING Huajie, SONG Yonghua, HU Zechun, et al. Probability density function of day-ahead wind power forecast errors based on power curves of wind farms[J]. Proceedings of the CSEE, 2013, 33(34): 136-144.
[18] 叶林,赵永宁. 基于空间相关性的风电功率预测研究综述[J]. 电力系统自动化,2014, 38(14):126-135.
[18] YE Lin, ZHAO Yongning. A review on wind power prediction based on spatial correlation approach[J]. Automation of Electric Power Systems, 2014, 38(14): 126-135.
[19] JUNG J, BROADWATER R P. Current status and future advances for wind speed and power forecasting[J]. Renewable and Sustainable Energy Reviews, 2014(31): 762-777.
[20] WANG J, WANG Y, JIANG P. The study and application of a novel hybrid forecasting model: a case study of wind speed forecasting in China[J]. Applied Energy, 2015, 143: 472-488.
[21] 钱政,裴岩,曹利宵,等. 风电功率预测方法综述[J]. 高电压技术,2016, 42(4): 1047-1060.
[21] QIAN Zheng, PEI Yan, CAO Lixiao, et al. Review of wind power forecasting method[J]. High Voltage Engineering, 2016, 42(4): 1047-1060.
[22] OKUMUS I, DINLER A. Current status of wind energy forecasting and a hybrid method for hourly predictions[J]. Energy Conversion and Management, 2016, 123: 362-371.
[23] DONG Q, SUN Y, LI P. A novel forecasting model based on a hybrid processing strategy and an optimized local linear fuzzy neural network to make wind power forecasting: a case study of wind farms in China[J]. Renewable Energy, 2017, 102: 241-257.
[24] GALLEGO-CASTILLO C, CUERVA-TEJERO A, LOPEZ-GARCIA O. A review on the recent history of wind power ramp forecasting[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 1148-1157.
[25] YE L, ZHAO Y, ZENG C, et al. Short-term wind power prediction based on spatial model[J]. Renewable Energy, 2017, 101: 1067-1074.
[26] HERBERT G M, JOSELIN S, AMUTHA D. A review of technical issues on the development of wind farms[J]. Renewable & Sustainable Energy Reviews, 2014, 32: 619-641.
[27] JHA S K, BILALOVIC J, JHA A, et al. Renewable energy: present research and future scope of artificial intelligence[J]. Renewable & Sustainable Energy Reviews, 2017, 77: 297-317.
[28] 杨正瓴,刘阳,张泽,等. 采用最近历史观测值和PLSR进行空间相关性超短期风速预测[J]. 电网技术,2017, 41(6): 1815-1822.
[28] YANG Zhengling, LIU Yang, ZHANG Ze, et al. Ultra-short-term wind speed prediction with spatial correlation using recent historical observations[J]. Power System Technology, 2017, 41(6): 1815-1822.
[29] 时彤,姜卓,肖白. 基于风电场输出功率波动特性分析的本征时间尺度的确定[J]. 分布式能源,2017,2(4): 53-58.
[29] SHI Tong, JIANG Zhuo, XIAO Bai. Intrinsic time scale determination based on analyzing wind power output fluctuation features[J]. Distributed Energy, 2017, 2(4): 53-58.
[30] 杨正瓴,杨钊,张玺,等. 基于季风提高空间相关性预测的优化延迟时间[J]. 电力系统保护与控制,2016, 44(15): 33-38.
[30] YANG Zhengling, YANG Zhao, ZHANG Xi, et al. Improving optimal lag time of spatial correlation prediction by characteristics of monsoon[J]. Power System Protection and Control, 2016, 44(15): 33-38.
[31] 杨正瓴,冯勇,熊定方,等. 基于季风特性改进风电功率预测的研究展望[J]. 智能电网,2015, 3(1): 1-7.
[31] YANG Zhengling, FENG Yong, XIONG Dingfang, et al. Research prospects of improvement in wind power forecasting based on characteristics of monsoons[J]. Smart Grid, 2015, 3(1): 1-7.
[32] 陈隆勋,朱乾根,罗会邦,等. 东亚季风[M]. 北京:气象出版社,1991.
[33] WANG B. The Asian monsoon[M]. New York: Springer-Verlag, 2006.
[34] LAING A, EVANS J-L. Introduction to tropical meteorology, 2nd edition[EB/OL]. (2011-10)[2014-07-08]. .
[35] PREETHI B, MUJUMDAR M, KRIPALANI R H, et al. Recent trends and tele-connections among South and East Asian summer monsoons in a warming environment[J]. Climate Dynamics, 2017, 48(7-8): 2489-2505.
[36] LEE J-YI, WANG B. Future change of global monsoon in the CMIP5[J]. Climate Dynamics, 2014, 42(1-2): 101-119.
[37] 黄瑞芳,周园春,鞠永茂,等. 气象与大数据[M]. 北京:科学出版社,2017.
[38] EFRON B, HASTIE T. Computer age statistical inference: algorithms, evidence, and data science[M]. Cambridge: Cambridge University Press, 2016.
[39] PROIETTI T. Direct and iterated multistep AR methods for difference stationary processes[J]. International Journal of Forecasting, 2011, 27(2): 266-280.
[40] MCELROY T. When are direct multi-step and iterative forecasts identical?[J]. Journal of Forecasting, 2015, 34(4): 315-336.
[41] CHEVILLON G. Multistep forecasting in the presence of location shifts[J]. International Journal of Forecasting, 2016, 32(1): 121-137.
[42] KHALID M, SAVKIN A V. Closure to discussion on “a method for short-term wind power prediction with multiple observation points”[J]. IEEE Transactions on Power Systems, 2013, 28(2): 1898-1899.
[1] 郑若楠. 基于小波分解的超短期风速混合模型组合预测[J]. 分布式能源, 2018, 3(6): 38-46.
[2] . 基于EEMD-BBO-ELM的短期风电功率预测方法[J]. 分布式能源, 2018, 3(3): 22-27.