Please wait a minute...
分布式能源  2019, Vol. 4 Issue (4): 30-34    DOI: 10.16513/j.cnki.10-1427/tk.2019.04.005
  学术研究 本期目录 | 过刊浏览 |
基于模糊PI控制器的改进MPPT算法
詹俊男,白迪
沈阳工程学院,辽宁 沈阳 110136
Improved MPPT Algorithm Based on Fuzzy PI Controller
ZHAN Junnan,BAI Di
Shenyang Institute of Engineering, Shenyang 110136, Liaoning Province, China
全文: PDF(1276 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

与传统以同步发电机为发电主体的发电系统不同,微网内存在多种类型的分布式电源(distributed generation,DG),为便于控制和管理如此复杂的系统则需要采用分层控制,分层控制分为微电网初级控制、二级控制、三级控制。以光伏发电这一种DG为例,在初级控制层面根据其特性优化了光伏电源最大功率点跟踪(maximum power point tracking,MPPT)的方法,将增量电导法中融入了基于模糊控制的PI控制器,使其具有更好的实时性和计算速度,并且能及时根据环境变化改变其输出功率,具有良好的适应性。

关键词: 微电网光伏电源最大功率追踪PI控制器    
Abstract

Different from the traditional generation system with synchronous generators as the main generator, there are many types of distributed generators (DG) in the microgrid. In order to facilitate the control and management of such a complex system, hierarchical control is needed, which is divided into primary control, secondary control and tertiary control. Taking photovoltaic power generation as an example, this paper optimizes the method of maximum power point tracking (MPPT) of photovoltaic power supply according to its characteristics at the primary control level. The incremental conductance method is integrated into the PI controller based on fuzzy control, so that it has better real-time performance and calculation speed, and can change its output power in time according to environmental changes. It has good adaptability.

Key Wordsmicrogridphotovoltaic power supplymaximum power trackingPI controller
收稿日期: 2019-05-04
基金资助:辽宁省科技厅自然科学基金项目(20180550006)

引用本文:

詹俊男,白迪. 基于模糊PI控制器的改进MPPT算法[J]. 分布式能源, 2019, 4(4): 30-34.
ZHAN Junnan,BAI Di. Improved MPPT Algorithm Based on Fuzzy PI Controller[J]. Distributed Energy, 2019, 4(4): 30-34.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.cnki.10-1427/tk.2019.04.005      或      http://der.tsinghuajournals.com/CN/Y2019/V4/I4/30

图1  光伏发电系统
图2  光伏电源等效电路
图3  光复电源的特性曲线
图4  增量电导法算法流程图
图5  模糊自适应的PI控制器结构
图6  加入模糊PI控制器的增量电导法
图7  仿真电路原理图
图8  仿真波形图
图9  陡增光照后的仿真波形图
[1] WANG Chengshan, WANG Shouxiang. Research on several issues of distributed generation function[J]. Electric Automation, 2008, 30(20): 1-4.
[1] 王成山,王守相. 分布式发电功能若干问题的研究[J]. 电力系统自动化,2008, 30(20): 1-4.
[2] HATZIARGYRIOU N, ASANO H, IRAAVANI R, et al. Microgirds: an overview of ongoing research, development, and demonstration projects[J]. IEEE power and Energy Magazine, 2007, 5(4): 78-94.
[3] SHI Shanshan, LU Zongxiang, MIN Yong, et al. Frequency characteristic analysis of isolated microgrid operation[J]. Automation of Electric Power Systems, 2011, 35(9): 36-41.
[3] 时珊珊,鲁宗相,闵勇,等. 微电网孤网运行时的频率特性分析[J]. 电力系统自动化,2011, 35(9): 36-41.
[4] 赵畹君. 高电压直流输电工程技术[M]. 北京:中国电力出版社,2004.
[5] PARK H P, JUNG J H. PWM and PFM hybrid control method for LLC resonant converters in high switching frequency operation[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 253-263.
[6] HUANG X C, LEE F C, LI Q, et al. High-frequency high-efficiency GaN-based interleaved CRM bidirectional buck/boost converter with inverse coupled inductor[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4343-4352.
[7] VILLALVA M G, GAZOLI J R. Comprehensive approach to modeling and simulation of photovoltaic arrays[J]. IEEE Trans. on Power Electronic, 2009, 24(5): 1198-1208.
[8] CELIK A N, ACIKGOZ N. Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four and five-parameter models[J]. Applied Energy, 2007, 84(1): 1-15.
[9] DE BRITO M, JUNIOR L, SAMPAIO L, et al. Evaluation of the main MPPT techniques for photovoltaic applications[J]. IEEE Trans. on Industrial Electronics, 2013, 60(3): 1156-1167.
[10] WU H, XU P, HU H, et al. Multiport converters based on integration of full-bridge and bidirectional DC-DC topologies for renewable generation systems[J]. IEEE Transactions on Industrial Electronics, 2014, 6(2): 856-869.
[11] ZHUANG Yani, YANG Xiuyuan, JIN Xincheng. Study on operation technology of wind-PV-energy storage combined power generation[J]. Power Generation Technology, 2018, 39(4): 296-303.
[11] 庄雅妮,杨秀媛,金鑫城. 风光储联合发电运行技术研究[J]. 发电技术,2018, 39(4): 296-303.
[12] ZHU Qing, ZHANG Xing, LI Shanshou, et al. Research and test of dynamic multi-peak maximum power point tracking algorithm based on power closed-loop[J]. Proceedings of the CSEE, 2016, 36(5): 1218-1227.
[12] 祝青,张兴,李善寿,等. 一种基于功率闭环的动态多峰值最大功率点跟踪算法研究与测试[J]. 中国电机工程学报,2016, 36(5): 1218-1227.
[13] ZHOU Yuhao, ZHANG Haizhen, SONG Shengnan. Research on key technologies of multi energy complementary distributed energy experimental platform system[J]. Power Generation & Air Condition, 2017, 38(6): 5-9, 37.
[13] 周宇昊,张海珍,宋胜男. 多能互补分布式能源实验平台系统关键技术研究[J]. 发电与空调,2017, 38(6): 5-9, 37.
[14] LIU Xiping, LIN Heyun. Summary of wind power generator and wind power control technology[J]. Large Electric Machinery Technology, 2007(3): 17-20.
[14] 刘细平,林鹤云. 风力发电机及风力发电控制技术综述[J]. 大电机技术,2007(3): 17-20.
[15] YANG Yong, ZHU Binbin, ZHAO Fangping, et al. An adaptive variable step maximum power tracking method for current predictive control[J]. Proceedings of the CSEE, 2014, 34(6): 855-862.
[15] 杨勇,朱彬彬,赵方平,等. 一种电流预测控制的自适应变步长最大功率跟踪方法[J]. 中国电机工程学报,2014, 34(6): 855-862.
[16] PENG Yuejin, ZHANG Guorui, WANG Yong, et al. Differences in the effects of anode and cathode humidification on the performance of proton exchange membrane fuel cells[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 196-203.
[16] 彭跃进,张国瑞,王勇,等. 阴、阳极加湿对质子交换膜燃料电池性能影响的差异性[J]. 电工技术学报,2017, 32(4): 196-203.
[17] CHEN Weirong, LIU Jiawei, LI Qi, et al. Review and prospect of fault diagnosis methods for proton exchange membrane fuel cells[J]. Proceedings of the CSEE, 2017, 37(16): 4712-4721.
[17] 陈维荣,刘嘉蔚,李奇,等. 质子交换膜燃料电池故障诊断方法综述及展望[J]. 中国电机工程学报,2017, 37(16): 4712-4721.
[18] CHEN Quan, LI Lingdong, WANG Qunjing, et al. Modeling of photovoltaic grid-connected system and its impact on voltage stability of distribution network[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 241-247.
[18] 陈权,李令冬,王群京,等. 光伏发电并网系统的仿真建模及对配电网电压稳定性影响[J]. 电工技术学报,2013, 28(3): 241-247.
[19] XU Fang, ZHONG Cheng, WANG Yubo. Control strategy for photovoltaic system participating in power grid frequency modulation based on real-time maximum power estimation[J]. Guangdong Electric Power, 2019, 32(6): 1-8.
[19] 徐放,钟诚,王昱博. 基于实时最大功率估计的光伏系统参与电网调频的控制策略[J]. 广东电力,2019, 32(6): 1-8.
[1] 阚圣钧,魏少雄,赵继钢,张继红. 考虑分时电价的微电网储能容量优化配置[J]. 分布式能源, 2022, 7(2): 44-49.
[2] 宁文琴, 杨淑霞. 分时电价下多微电网与微电网群运营比较[J]. 分布式能源, 2021, 6(5): 10-17.
[3] 王亚旭, 宋维功, 李勇军, 王春强. 直流微电网储能变流器动态下垂控制研究[J]. 分布式能源, 2021, 6(2): 61-67.
[4] 黄阮明,王海群,张铭泽,李灏恩,屈靖雅,赵晶晶. 计及负荷电压静态特性的光储微电网频率控制策略[J]. 分布式能源, 2020, 5(6): 1-6.
[5] 任岷, 李卫东, 胡博, 李巍, 王振南. 长期并网运行的海岛微电网电源容量优化配置[J]. 分布式能源, 2019, 4(5): 75-82.
[6] 李娟,金焕,任于涵. 微电网模式切换的转动惯量自适应VSG控制策略[J]. 分布式能源, 2019, 4(4): 1-9.
[7] 程苒,李峰,常湧. 独立微电网系统电源容量优化配置研究[J]. 分布式能源, 2019, 4(3): 8-15.
[8] 赵长乐,刘天羽,江秀臣,盛戈皞,宋学伟,范亚楠. 基于能源局域网的园区型微电网优化规划[J]. 分布式能源, 2019, 4(3): 28-34.
[9] 廖碧莲,唐江琦,吴誉寰,高中林. 光伏并网逆变器控制策略研究[J]. 分布式能源, 2019, 4(3): 50-55.
[10] 于越,宋保业,侯凯祥,朱然. 基于双电源双火线的微电网结构及控制器设计[J]. 分布式能源, 2019, 4(1): 47-51.
[11] 杨效嘉,杨俊友. 微电网电池储能消纳弃风优化模型[J]. 分布式能源, 2018, 3(6): 25-30.
[12] 李鹏飞,张延迟,张倩,宋悦琳. 分布式发电系统中储能装置的优化配置[J]. 分布式能源, 2018, 3(6): 60-66.
[13] 陈松波,罗伟彬,梁唐杰. 连南光储微电网升级改造方案与实践[J]. 分布式能源, 2018, 3(6): 67-73.
[14] 吴英, 廖鹏毅, 黄迪洁. 含多个微电网的配电网特征分析与运维策略[J]. 分布式能源, 2018, 3(5): 34-39.
[15] 张贻娜, 高超峰, 王文明, 朱文江, 胡明. 负载率对孤立海岛微电网暂态稳定性的影响[J]. 分布式能源, 2018, 3(4): 32-40.