Please wait a minute...
分布式能源  2020, Vol. 5 Issue (1): 1-8    DOI: 10.16513/j.2096-2185.DE.1901124
  综述 本期目录 | 过刊浏览 |
氢能产业发展技术路径研究
曹蕃,陈坤洋,郭婷婷,金绪良,王海刚,张丽
中国大唐集团科学技术研究院有限公司火力发电技术研究院,北京 石景山 100043
Research on Technological Path of Hydrogen Energy Industry Development
CAO Fan, CHEN Kunyang, GUO Tingting, JIN Xuliang, WANG Haigang, ZHANG Li
Institute of Thermal Power Generation Technology, China Datang Corporation Science and Technological Research Institute, Shijingshan District, Beijing 100043, China
全文: PDF(940 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

氢能具有低碳清洁、能量密度大和转化效率高等优点,有望在我国能源转型进程中发挥举足轻重的作用。分析了制氢、储氢和用氢等领域各项技术的研究现状与发展前景,在此基础上提出了可再生能源、综合能源服务园区耦合氢能发展的具体技术路径。固体聚合物(solid polymer electrolyte,SPE)电解制氢和固态材料储氢是制氢和储氢环节最具潜力的发展方向。用氢环节中氢燃料电池和天然气掺氢等技术应同步推进。弃风/弃光电解水制氢、风电/光伏离网制氢与燃料电池发电、加氢站供应、制甲醇以及天然气掺氢等技术有机结合将有效解决可再生能源制氢不经济和运输困难的问题,同时氢能可实现多种能源网络的互联,在未来综合能源服务园区内的应用前景非常广阔。

关键词: 氢能固体聚合物(SPE)电解固态材料储氢天然气掺氢可再生能源    
Abstract

Hydrogen energy is expected to play an important role in China's energy transformation process due to its low carbon, clean, high energy density and high conversion efficiency. This paper analyzes the research status and development prospect of various technologies in the fields of hydrogen production, hydrogen storage and hydrogen utilization, and then the specific technical path of renewable energy and integrated energy service system coupled hydrogen energy are discussed. Solid polymer electrolyte (SPE) hydrogen production and solid material hydrogen storage are the most potential development direction of hydrogen production and storage. Hydrogen fuel cell and adding hydrogen into natural gas pipeline should be advanced simultaneously. The combination of water electrolysis using abandoning wind/photovoltaic or off-grid hydrogen production and fuel cell power generation, hydrogen station supply, methanol production and natural gas hydrogen mixing will effectively solve the problems of uneconomical and difficult transportation. Hydrogen can also realize the interconnection of multiple energy networks and has a very broad application prospect in the future integrated energy service system.

Key Wordshydrogen energysolid polymer electrolyte(SPE)solid material hydrogen storageadding hydrogen into natural gas pipelinerenewable energy
收稿日期: 2019-08-23
ZTFLH:  TK91  
作者简介: 曹蕃(1988—),男,博士,高级工程师,主要从事电厂环保和氢能方向的研究,caofan@cdt-kxjs.com;|陈坤洋(1986—),女,博士,高级工程师,主要从事燃煤烟气重金属协同脱除和氢能方向研究;|郭婷婷(1973—),女,博士,高级工程师,主要从事电厂污染物排放控制,新能源等方面的研究;|金绪良(1979—),男,硕士,正高级工程师,主要从事电厂化学,新能源等方面的研究;|王海刚(1980—),男,博士,高级工程师,主要从事电厂环保,新能源等方面的研究;|张 丽(1994—),女,硕士,工程师,主要从事电厂化学,新能源等方面的研究。

引用本文:

曹蕃, 陈坤洋, 郭婷婷, 金绪良, 王海刚, 张丽. 氢能产业发展技术路径研究[J]. 分布式能源, 2020, 5(1): 1-8.
CAO Fan, CHEN Kunyang, GUO Tingting, JIN Xuliang, WANG Haigang, ZHANG Li. Research on Technological Path of Hydrogen Energy Industry Development[J]. Distributed Energy, 2020, 5(1): 1-8.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.2096-2185.DE.1901124      或      http://der.tsinghuajournals.com/CN/Y2020/V5/I1/1

表1  电解水技术对比
表2  储氢技术对比
图1  可再生能源耦合氢能发展技术路径图
图2  综合能源服务园区耦合氢能发展技术路径图
[1] MORIARTY P, HONNERY D. Intermittent renewable energy: The only future source of hydrogen?[J]. International Journal of Hydrogen Energy, 2007, 32(12): 1616-1624.
[2] LIU Jian, ZHONG Caifu. The present situation and prospect of hydrogen energy development in China[J]. Energy of China, 2019, 2(1): 32-36.
[2] 刘坚,钟财富. 我国氢能发展现状与前景展望[J]. 中国能源,2019, 2(1): 32-36.
[3] International commission on hydrogen energy. Research report on the future development trend of hydrogen energy[R]. 2017.
[3] 国际氢能源委员会. 氢能源未来发展趋势调查报告[R]. 2017.
[4] HUO Xianxu, WANG Jing, JIANG Ling, et al. Review on key technologies and applications of hydrogen energy storage system[J]. Energy Storage Science and Technology, 2016, 5(2): 197-203.
[4] 霍现旭,王靖,蒋菱,等. 氢储能系统关键技术及应用综述[J]. 储能科学与技术,2016, 5(2): 197-203.
[5] SHI Hong, WU Songquan, LI Yiping, et al. Japan's policy measures to promote the development of electric vehicles[J]. Auto Review, 2019(12): 53-57.
[5] 石红,吴松泉,李奕平,等. 日本推进电动汽车发展的政策措施[J]. 汽车纵横,2019(12): 53-57.
[6] JING Chunmei, HE Qixiang, OU Xunmin. Looking at China's hydrogen energy development from Japan and South Korea's hydrogen energy industry [J]. Energy, 2019(12): 25-27.
[6] 景春梅,何七香,欧训民. 从日韩氢能产业看我国氢能发展[J]. 能源,2019(12): 25-27.
[7] BAO Jincheng, ZHAO Ziliang, MA Qiuyu. Summary of the development trend of hydrogen energy technology[J]. Automotive Digest, 2020(2): 6-11.
[7] 鲍金成,赵子亮,马秋玉. 氢能技术发展趋势综述[J]. 汽车文摘,2020(2): 6-11.
[8] YANG Yanxiang, WEI Shouxiang, LI Qingxun. Suggestions for China's hydrogen energy industry development[J]. Petrochemical, 2019, 27(11): 6-8+42.
[8] 杨延翔,魏寿祥,李庆勋. 我国氢能产业发展建议[J]. 当代石油石化,2019, 27(11): 6-8, 42.
[9] XU Shisen, ZHANG Ruiyun, CHENG Jian, et al. Application and development of electrolytic hydrogen production and high temperature fuel cell in electric power industry[J]. Proceedings of the CSEE, 2019, 39(9): 2531-2536.
[9] 许世森,张瑞云,程健,等. 电解制氢与高温燃料电池在电力行业的应用与发展[J]. 中国电机工程学报,2019, 39(9): 2531-2536.
[10] CHEN Sihan, ZHANG Ke, CHANG Liping, et al. Overview of traditional and new hydrogen production methods[J]. Natural Gas Chemical Industry, 2019, 44(2): 122-127.
[10] 陈思晗,张珂,常丽萍,等. 传统和新型制氢方法概述[J]. 天然气化工,2019, 44(2): 122-127.
[11] YU Hongmei, YI Baolian. Hydrogen for Energy Storage and Hydrogen Production from Electrolysis[J]. Engineering Sciences, 2018, 20(3): 58-65.
[11] 俞红梅,衣宝廉. 电解制氢与氢储能[J]. 中国工程科学,2018, 20(3): 58-65.
[12] HUANG Gesheng, LI Jinshan, WEI Shouxiang, et al. Status and economic analysis of hydrogen production technology from fossil raw materials[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5217-5224.
[12] 黄格省,李锦山,魏寿祥,等. 化石原料制氢技术发展现状与经济性分析[J]. 化工进展,2019, 38(12): 5217-5224.
[13] MOSTAFA Rezaei, MALIKEH Salimi, MOZHGAN Momeni, et al. Investigation of the socio-economic feasibility of installing wind turbines to produce hydrogen: Case study[J]. International Journal of Hydrogen Energy, 2018, 43: 23135-23147.
[14] LUO Chengxian. Present status of power-to-hydrogen technology worldwide using renewable energy[J]. Sino-Global Energy, 2017, 22(8): 25-32.
[14] 罗承先. 世界可再生能源电力制氢现状[J]. 中外能源,2017, 22(8): 25-32.
[15] BUTTLER Alexander, SPLIETHO Hartmut. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454.
[16] MANUEL Gotz, JONATHAN Lefebvre, FRIEDEMANN Mors, et al. Renewable power-to-gas: A technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390.
[17] JI Liqiang, ZHAO Yingpeng, WANG Fan, et al. Current situation of hydrogen energy technology and hydrogen energy storage applied in power generation[J[. Metallic Functional Materials, 2019, 26(6): 23-31.
[17] 吉力强,赵英朋,王凡,等. 氢能技术现状及其在储能发电领域的应用[J]. 金属功能材料,2019, 26(6): 23-31.
[18] ZHANG Na, CHEN Hong, MA Xiao, et al. Research progress of high density solid-state hydrogen storage materials[J]. Manned Spaceflight, 2019, 25(1): 116-121.
[18] 张娜,陈红,马骁,等. 高密度固态储氢材料技术研究进展[J]. 载人航天,2019, 25(1): 116-121.
[19] LIU Haizhen, XU Li, WANG Xinhua, et al. Technical indicators for solid-state hydrogen storage systems and hydrogen storage materials for grid-scale hydrogen energy storage application[J]. Power System Technology, 2017, 41(10): 3376-3384.
[19] 刘海镇,徐丽,王新华,等. 电网氢储能场景下的固态储氢系统及储氢材料的技术指标研究[J]. 电网技术,2017, 41(10): 3376-3384.
[20] ZHAO Lin, ZHANG Jianxing, ZHU Weiyan, et al. Research progress of hydrogen storage technology for liquid organic matter[J]. Chemical Reagents, 2018, 41(1): 47-53.
[20] 赵琳,张建星,祝维燕,等. 液态有机物储氢技术研究进展[J]. 化学试剂,2018, 41(1): 47-53.
[21] YU Peng, WANG Jian, ZHENG Jingfeng, et al. Review on hydrogen energy utilization and development[J]. Automobile Applied Technology, 2019(24): 22-25.
[21] 于蓬,王健,郑金凤,等. 氢能利用与发展综述[J]. 汽车实用技术,2019(24): 22-25.
[22] MANUEL Bailera, PILAR Lisbona, LUIS M Romeo, et al. Power to gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 292-312.
[23] MA Luyao, YIN Chenxu, WU Qi, et al. The role of hydrogen energy development in a low-carbon energy transition[J]. China Power Enterprise Management, 2019(34): 60-61.
[23] 马璐瑶,尹晨旭,吴琦,等. 氢能发展在能源清洁低碳转型中的作用[J]. 中国电力企业管理,2019(34): 60-61.
[24] ISHAQ Haris, DINCER Ibrahim, NATERER Greg. Performance investigation of an integrated wind energy system for co-generation of power and hydrogen[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9153-9164.
[25] BAILERA Manuel, LISBONA Pilar. Power to gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 292-312.
[26] GOTZ Manuel, LEFEBVRE Jonathan, MORS Friedemann, et al. Renewable power-to-gas: A technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390.
[27] MCKENNA R C, BCHINI Q, WEINAND J M, et al. The future role of power-to-gas in the energy transition: Regional and local techno-economic analyses in Baden-Württemberg[J]. Applied Energy, 2018, 212: 386-400.
[28] KARIM Ghaib, FATIMA Ben-Fares. Power-to-methane: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 433-446.
[29] LI Jiarong, LIN Jin, XIAO Jinyu, et al. Technical and energy consumption comparison of power-to-chemicals (P2X) technologies for renewable energy integration[J]. Journal of Global Energy Interconnection, 2020, 3(1): 86-96.
[29] 李佳蓉,林今,肖晋宇,等. 面向可再生能源消纳的电化工(P2X)技术分析及其能耗水平对比[J]. 全球能源互联网,2020, 3(1): 86-96.
[30] SHI Jingli, GAO Hu, WANG Hongfang. Economic analysis of hydrogen production by wind power[J]. Renewable Energy, 2015, 37(2): 11-14.
[30] 时璟丽,高虎,王红芳. 风电制氢经济性分析[J]. 可再生能源,2015, 37(2): 11-14.
[31] SHAO Zhigang, YI Baolian. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477.
[31] 邵志刚,衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊,2019, 34(4): 469-477.
[32] YANG Changhai, WAN Zhi, LIU Zhengying, et al. Economic analysis of comprehensive utilization of hydrogen[J]. Electrical & Energy Management Technology, 2019(21): 83-88.
[32] 杨昌海,万志,刘正英,等. 氢综合利用经济性分析[J]. 电器与能效管理技术,2019(21): 83-88.
[33] WANG Kanhong, ZHAO Zhengtong, LUO Jinghui, et al. Simulation and performance analysis of hydrogen storage system for wind and solar complementary power generation[J]. Energy Conservation, 2019, 38(11): 79-84.
[33] 王侃宏,赵政通,罗景辉,等. 风光互补发电制氢储能系统模拟仿真研究及性能分析[J]. 节能,2019, 38(11): 79-84.
[34] GREINER C J, KORP?S M, HOLEN A T. A Norwegian case study on the production of hydrogen from wind power[J]. International Journal of Hydrogen Energy, 2007, 32(10): 1500-1507.
[35] CHEN Jianming, XIAO Jiaxuan. Feasibility study of hydrogen storage based on the problem of abandoned wind and light[J]. Technology and Market, 2019, 26(11): 23-25.
[35] 陈建明,肖佳璇,基于弃风弃光问题的氢储能可行性研究[J]. 技术与市场,2019, 26(11): 23-25.
[36] ZHANG Guotao, WAN Xinhua. A wind-hydrogen energy storage system model for massive wind energy curtailment[J]. International Journal of Hydrogen Energy, 2014, 39(3): 1243-1252.
[37] HOU Peng, ENEVOLDSEN Peter, EICHMAN Joshua. Optimizing investments in coupled offshore wind electrolytic hydrogen storage systems in Denmark[J]. Journal of Power Sources, 2017, 359: 186-197.
[38] YAN Zhuoyong, KONG Xiangwei. Research on non-grid-connected wind power water-electrolytic hydrogen production system and its applications[J]. Engineering Sciences, 2015, 17(3): 30-34.
[38] 颜卓勇,孔祥威. 非并网风电电解水制氢系统及应用研究[J]. 中国工程科学,2015, 17(3): 30-34.
[39] LUNA Phil, HAHN Christopher, HIGGINS Drew, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J]. Science, 2019, 364(350): 1-9.
[40] LI Qingxun, WANG Zongbao, LOU Shujie, et al. Research progress in methanol production from carbon dioxide hydrogenation[J]. Modern Chemical Industry, 2019(5): 19-23.
[40] 李庆勋,王宗宝,娄舒洁,等. 二氧化碳加氢制甲醇研究进展[J]. 现代化工,2019(5): 19-23.
[41] JIANG Qingmei, WANG Qin, XIE Ping, et al. Development status and analysis of long-distance hydrogen pipeline at home and abroad[J]. Oil-Gas Field Surface Engineering, 2019, 38(12): 6-8, 64.
[41] 蒋庆梅,王琴,谢萍,等. 国内外氢气长输管道发展现状及分析[J]. 油气田地面工程,2019, 38(12): 6-8, 64.
[42] HUANG Ming, WU Yong, WEN Xizhi, et al. Feasibility analysis of hydrogen transport in natural gas pipeline[J]. Gas & Heat, 2013, 33(4): 39-42.
[42] 黄明,吴勇,文习之,等. 利用天然气管道掺混输送氢气的可行性分析[J]. 煤气与热力,2013, 33(4): 39-42.
[43] MA Xiangyang, HUANG Xiaomei, WU Chang. Study on the influence of natural gas hydrogenation on combustion characteristics of domestic gas cooker[J]. Renewable Energy Resources, 2018, 36(12): 1746-1751.
[43] 马向阳,黄小美,吴嫦. 天然气掺氢对家用燃气灶燃烧特性的影响研究[J]. 可再生能源,2018, 36(12): 1746-1751.
[44] ZHOU Gang. Development model of integrated energy services for power generation enterprises[J]. China Science and Technology Information, 2019(23): 95-96, 14.
[44] 周刚,发电企业综合能源服务发展模式[J]. 中国科技信息,2019(23): 95-96, 14.
[45] ZHOU Gang. Multi-energy complementary park integrated smart energy project development [J]. Science and Technology & Innovation, 2019(23): 107-108.
[45] 周刚. 多能互补园区综合智慧能源项目开发[J]. 科技与创新,2019(23): 107-108.
[46] FENG Wei, LU Hongyou, MARNAY Carnay, et al. Development of distributed energy microgrid system in U.S.[J]. Electric Power, 2019, 52(6): 94-103.
[46] 冯威,鲁虹佑,MARNAY Carnay, 等. 美国分布式综合能源微网系统发展[J]. 中国电力,2019, 52(6): 94-103.
[47] SUN Ke, DUAN Guang, LI Xiaochun, et al. Structural description and design optimization for integrated energy service system [J]. Thermal Power Generation, 2017, 46(12): 33-39.
[47] 孙可,段光,李晓春,等. 综合能源服务系统结构描述及设计优化[J]. 热力发电,2017, 46(12): 33-39.
[48] KHALID F, EL-EMAM R S, HOGERWAARD J, et al. Techno-economic feasibility of renewable energy based stand-alone energy system for a greenhouse: case study[J]. Future Cities and Environment, 2018, 4(1): 1-9.
[49] DAS C M, GHOSH A. Fuel cell application to mitigate load ramping impacts of rooftop PV system installation[J]. Energy Procedia, 2019, 157: 10-16.
[50] RADENAHMAD N, AZAD A T, SAGHIR M, et al. A review on biomass derived syngas for SOFC based combined heat and power application[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109560.
[51] MEHRPOOYA M, SADEGHZADEH M, RAHIMI A, et al. Technical performance analysis of a combined cooling heating and power (CCHP) system based on solid oxide fuel cell (SOFC) technology-A building application[J]. Energy Conversion and Management, 2019, 198: 111767.
[1] 张勋奎. 以新能源为主体的新型电力系统发展路线图[J]. 分布式能源, 2021, 6(6): 1-8.
[2] 李建林, 李光辉, 梁丹曦, 马速良. “双碳目标”下可再生能源制氢技术综述及前景展望[J]. 分布式能源, 2021, 6(5): 1-9.
[3] 曹蕃, 郭婷婷, 殷爱鸣, 陈坤洋, 金绪良, 张丽, 杨钧晗. 风光氢混合发电系统设计与能量管理策略研究进展[J]. 分布式能源, 2021, 6(4): 1-14.
[4] 苗安康, 袁越, 吴涵, 袁博鑫. “双碳”目标下绿色氢能技术发展现状与趋势研究[J]. 分布式能源, 2021, 6(4): 15-24.
[5] 开赛江, 计力, 周专, 袁铁江, 郭小龙. 100%可再生能源综合能源系统容量优化配置[J]. 分布式能源, 2021, 6(4): 34-40.
[6] 卓俊威, 沈小军. 可再生能源发电制氢系统仿真软件开发[J]. 分布式能源, 2021, 6(4): 47-55.
[7] 张全斌. 基于零碳排放模式的氢气储能应用场景展望[J]. 分布式能源, 2021, 6(4): 56-62.
[8] 田江南, 安源, 蒋晶, 罗扬, 田景奎, 常德生. 碳中和背景下的脱碳方案[J]. 分布式能源, 2021, 6(3): 63-69.
[9] 杨浩. 氢在能源转型变革中的潜在优势分析[J]. 分布式能源, 2020, 5(3): 47-54.
[10] 黄旭祥, 韩学山, 李家维, 沈钟婷. 大电网储能与各类电源协同规划[J]. 分布式能源, 2019, 4(5): 67-74.
[11] 杨乐新, 肖明伟, 杜力, 谢茜子, 李佩. 分布式光伏电站接入系统方案设计[J]. 分布式能源, 2018, 3(4): 64-69.
[12] 金红光, 隋军. 变革性能源利用技术——分布式能源系统[J]. 分布式能源, 2016, 1(1): 1-5.