Please wait a minute...
分布式能源  2020, Vol. 5 Issue (1): 44-51    DOI: 10.16513/j.2096-2185.DE.2001008
  应用技术 本期目录 | 过刊浏览 |
电价引导下的电动汽车负荷特性
臧宝志1,吴长龙1,朱宏光1,魏莘1,高建宏1,吕倩楠2
1国网烟台供电公司,山东 烟台 264000
2北方工业大学电气与控制工程学院,北京 石景山 100144
Load Characteristics of Electric Vehicles Guided by Electricity Price
ZANG Baozhi 1, WU Changlong1, ZHU Hongguang1, WEI Zi1, GAO Jianhong1,LYU Qiannan 2
1State Grid Yantai Power Supply Company, Yantai 264000, Shandong Province, China;
2College of Electrical and Control Engineering, North China University of Technology, Shijingshan District, Beijing 100144, China
全文: PDF(1052 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

随着对环境的重视程度不断提高,越来越多的人选择电动汽车作为出行工具。电动汽车的使用人数越来越多和应用范围越来越广,随之也产生充电时间集中导致电网负担过重,电能质量降低的问题,为此对电价引导下的电动汽车负荷特性进行了研究。通过对电动汽车时空分布特性的研究,制定相关策略以调整用电负荷分布、缓解电网峰值负荷压力,对充电桩的安装位置及数量提供了合理的数据支撑;其次,对比有序充放电与无序充电对电网的影响,分析有序充电的优势所在,及有序放电对于电网"削峰填谷"的积极作用;最后,分析目前市场上现有的电价策略对用户充电行为的影响作用,并提出一种针对电动汽车的新型定价策略,总结当下电动汽车充电行为仍存在的不足和改进方向。

关键词: 电动汽车有序充电电价策略负荷特性    
Abstract

With the progress of society and economic development, people have paid more and more attention to the environment, and more and more people choose electric vehicles as their travel tools. More and more people use electric vehicles and their application scope is getting wider and wider, and the problems of concentrated charging time leading to overloaded power grids and reduced power quality have been raised. This article reviews the research methods and results of such problems in the field of electric vehicles. Based on the study of the spatio-temporal distribution characteristics of electric vehicles, formulate relevant strategies to adjust the power load distribution, alleviate the peak load pressure on the power grid, and provide reasonable data support for the installation location and number of charging piles. The impact of sequential charging on the power grid, analyzes the advantages of ordered charging, and the positive effect of ordered discharge on the "peak-cutting and valley-filling" of the power grid. Finally, analyzes the impact of existing electricity price strategies on the market on user charging behavior. A new pricing strategy for electric vehicles is proposed, and the shortcomings and improvement directions of electric vehicle charging behavior are summarized.

Key Wordselectric vehiclesorderly chargingprice strategyload characteristics
收稿日期: 2020-01-02
ZTFLH:  TM73  
基金资助:国家电网公司科技项目(520605190010)
作者简介: 臧宝志(1968—),男,硕士,主要从事电力工程、电力营销及新能源领域的研究和管理工作,15901526095@126.com;|吴长龙(1989—),男,硕士,助理工程师,研究方向为电力系统运行分析、综合能源系统;|朱宏光(1971—),男,本科,高级工程师,研究方向为电力营销及综合能源系统规划技术;|魏 莘(1973—),男,本科,高级工程师,研究方向为电力营销及综合能源系统规划技术;|高建宏(1974—),男,硕士,高级工程师,研究方向为电力营销及新能源领域的管理;|吕倩楠(1997—),通讯作者,女,硕士研究生,研究方向为微电网和新能源发电,lqnan202@163.com。

引用本文:

臧宝志, 吴长龙, 朱宏光, 魏莘, 高建宏, 吕倩楠. 电价引导下的电动汽车负荷特性[J]. 分布式能源, 2020, 5(1): 44-51.
ZANG Baozhi , WU Changlong, ZHU Hongguang , WEI Zi, GAO Jianhong, LYU Qiannan. Load Characteristics of Electric Vehicles Guided by Electricity Price[J]. Distributed Energy, 2020, 5(1): 44-51.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.2096-2185.DE.2001008      或      http://der.tsinghuajournals.com/CN/Y2020/V5/I1/44

图1  各类型电动汽车充电概率雷达图
图2  电动汽车各场景充电概率
图3  有序充放电实施流程
图4  电价策略对电动汽车负荷的影响分析过程
表1  北京地区峰谷电价时段划分
图5  分析用户响应行为过程
[1] CHEN Qingquan, ZHENG Bin. Development concept of new energy vehicle based on innovative thinking[J]. Strategic Study of CAE, 2019, 21(03): 70-75.
[1] 陈清泉,郑彬. 创新思维下的新能源汽车发展理念[J]. 中国工程科学,2019, 21(3): 70-75.
[2] SHE Chengqi, ZHANG Zhaosheng, LIU Peng, et al. Overview of the application of big data analysis technology in new energy vehicle industry: Based on operating big data of new energy vehicle[J]. Journal of Mechanical Engineering, 2019, 55(20): 3-16.
[2] 佘承其,张照生,刘鹏,等. 大数据分析技术在新能源汽车行业的应用综述—基于新能源汽车运行大数据[J]. 机械工程学报,2019, 55(20): 3-16.
[3] HE Yong. Research on the electric vehicle development strategy in china based on the progressive history of vehicle energy technology[J]. Science and Technology Management Research, 2014, 3(14): 31-36.
[3] 何泳. "以史为鉴"——从汽车能源技术发展史看我国电动汽车发展战略[J]. 科技管理研究,2014, 34(14): 31-36.
[4] CHENG Shan, WANG Xianning, FENG Yichen. Decentralized optimization of ordered charging scheduling in electric vehicle charging station[J]. Automation of Electric Power Systems, 2018, 42(1): 39-46.
[4] 程杉,王贤宁,冯毅煁. 电动汽车充电站有序充电调度的分散式优化[J]. 电力系统自动化,2018, 42(1): 39-46.
[5] LI Hanyu, DU Zhaobin, CHEN Lidan, et al. Trip simulation based charging load forecasting model and vehicle-to-grid evaluation of electric vehicle[J]. Automation of Electric Power Systems, 2019, 43(21): 88-102.
[5] 李含玉,杜兆斌,陈丽丹,等. 基于出行模拟的电动汽车充电负荷预测模型及V2G评估[J]. 电力系统自动化,2019, 43(21): 88-102.
[6] LUO Zhuowei, HU Zechun, SONG Yonghua, et al. Study on plug-in electric vehicles charging load calculating[J]. Automation of Electric Power Systems, 2011, 35(14): 36-42.
[6] 罗卓伟,胡泽春,宋永华,等. 电动汽车充电负荷计算方法[J]. 电力系统自动化,2011, 35(14): 36-42.
[7] HE Jinghan, XIE Yuyu, ZHANG Jinguo. Temporal and spatial distribution research for electric vehicle charging load and the impacts on distribution network[J]. Electric Power Construction, 2015, 36(7): 83-88.
[7] 和敬涵,谢毓毓,张金国. 电动汽车充电负荷时空分布及其对配电网的影响[J]. 电力建设,2015, 36(7): 83-88.
[8] XU Qingshan, CAI Tingting, LIU Yujun, et al. Location planning of charging stations for electric vehicles based on drivers' behaviors and travel chain[J]. Automation of Electric Power Systems, 2016, 40(4): 59-65, 77.
[8] 徐青山,蔡婷婷,刘瑜俊,等. 考虑驾驶人行为习惯及出行链的电动汽车充电站站址规划[J]. 电力系统自动化,2016, 40(4): 59-65, 77.
[9] DONG Longchang, CHEN Minyou, LI Zhe, et al. Ordered charging and discharging control strategy of EVs based on V2G[J]. Journal of Chongqing University, 2019, 42(1): 1-15.
[9] 董龙昌,陈民铀,李哲,等. 基于V2G的电动汽车有序充放电控制策略[J]. 重庆大学学报,2019, 42(1): 1-15.
[10] WANG Xiaohan. Modeling of charging and discharging behavior of electric vehicles and study on V2G[D]. Nanning: Guangxi University, 2014.
[10] 王晓涵. 电动汽车充放电行为建模及V2G研究[D]. 南宁:广西大学,2014.
[11] XU Zhiwei, HU Zechun, SONG Yonghua, et al. Coordinated charging strategy for PEV charging stations based on dynamic time-of-use tariffs[J]. Proceedings of the CSEE, 2014, 34(22): 3638-3646.
[11] 徐智威,胡泽春,宋永华,等. 基于动态分时电价的电动汽车充电站有序充电策略[J]. 中国电机工程学报,2014, 34(22): 3638-3646.
[12] LI Bin, ZHANG Yuanxing, XIE Hehe, et al. The resonance phenomenon and analysis of electric vehicle charging station[J]. Electrical Measurement & Instrumentation, 2019, 56(16): 73-78, 141.
[12] 李斌,张元星,谢呵呵,等. 电动汽车充电站谐振现象及其分析[J]. 电测与仪表,2019, 56(16): 73-78, 141.
[13] CHEN Kui, MA Zilong, SHEN Xinglai, et al. Analysis of charging station multi-source harmonic characteristics based on charging mode[J]. Smart Power, 2019, 47(9): 73-80.
[13] 陈奎,马子龙,沈兴来,等. 基于充电方式的充电站多源谐波特性分析[J]. 智慧电力,2019, 47(9): 73-80.
[14] ZHE Wei, YUE Li, LIN Cai. Electric vehicle charging scheme for a park-and-charge system considering battery degradation costs[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(3): 361-373.
[15] CUI Jindong, LUO Wenda, ZHOU Niancheng. Research on pricing model and strategy of electric vehicle charging and discharging based on multi view[J]. Proceeding of the CSEE, 2018, 38(15): 4438-4450, 4644.
[15] 崔金栋,罗文达,周念成. 基于多视角的电动汽车有序充放电定价模型与策略研究[J]. 中国电机工程学报,2018, 38(15): 4438-4450, 4644.
[16] WANG Yi, MA Xiu, WAN Yi, et al. Sequential charge-discharge guidance strategy for electric vehicles based on time-sharing charging-discharging margin[J]. Power System Technology, 2019, 43(12): 4353-4361.
[16] 王毅,麻秀,万毅,等. 基于分时充放电裕度的电动汽车有序充放电引导策略[J]. 电网技术,2019, 43(12): 4353-4361.
[17] LI Gang, DONG Yaozhong, WEN Fushuan, et al. Charging and discharging behavior prediction of electric vehicles based on mobile social network platform[J]. Automation of Electric Power Systems, 2016, 40(9): 64-70, 99.
[17] 李刚,董耀众,文福拴,等. 基于移动社交网络平台的电动汽车充放电行为预测[J]. 电力系统自动化,2016, 40(9): 64-70, 99.
[18] ZHANG Shuying, SUN Yingyun. Analysis for V2G response cost of ev aggregator considering time-of-use tariffs and battery wear[J]. Proceeding of the CSU-EPSA, 2017, 29(11): 39-46.
[18] 张书盈,孙英云. 考虑分时电价和电池损耗的电动汽车集群V2G响应成本分析[J]. 电力系统及其自动化学报,2017, 29(11): 39-46.
[19] GUO Fang, YANG Jun, YANG Chao. Study on the electric vehicle routing problem in the present of charging strategy and battery consumption[J]. Chinese Journal of Management Science, 2018, 26(9): 106-118.
[19] 郭放,杨珺,杨超. 考虑充电策略与电池损耗的电动汽车路径优化问题研究[J]. 中国管理科学,2018, 26(9): 106-118.
[20] LIU Libing, LIU Tianqi, ZHANG Tao, et al. Orderly charging and discharging strategy optimization for electric vehicles considering dynamic battery-wear model[J]. Automation of Electric Power Systems, 2016, 40(5): 83-90.
[20] 刘利兵,刘天琪,张涛,等. 计及电池动态损耗的电动汽车有序充放电策略优化[J]. 电力系统自动化,2016, 40(5): 83-90.
[21] WU Yulin, WEN Fushuan, DING Jianying, et al. A two-part electricity price based on generation right trading mechanism[J]. Journal of North China Electric Power University(Natural Science Edition), 2010, 37(5): 16-22.
[21] 伍玉林,文福拴,丁剑鹰,等. 基于两部制电价的发电权交易模式[J]. 华北电力大学学报(自然科学版), 2010, 37(5): 16-22.
[22] WU Chenxi, ZHANG Jie, ZHANG Xinyan, et al. Load shifting level evaluation of EVs in the different energy price environment [J]. Power System Protection and Control, 2019, 47(17): 14-22.
[22] 吴晨曦,张杰,张新延,等. 考虑电价影响的电动汽车削峰填谷水平评价[J]. 电力系统保护与控制,2019, 47(17): 14-22.
[23] TONG Xin, GUO Chunlin, ZHANG Mingzhi. Price Guide of Electric Vehicles Charging Based on Cost Function[J]. Electric Power Construction, 2016, 37(9): 30-35.
[23] 佟欣,郭春林,张明智. 基于价值函数的电动汽车充电价格引导研究[J]. 电力建设,2016, 37(9): 30-35.
[24] JIN Peng, AI Xin, XU Jiajia. An economic operation model for isolated microgrid based on sequence operation theory[J]. Proceedings of the CSEE, 2012, 32(25): 52-59, 10.
[24] 金鹏,艾欣,许佳佳. 基于序列运算理论的孤立微电网经济运行模型[J]. 中国电机工程学报,2012, 32(25): 52-59, 10.
[25] CAO Honghong. Research on the rationality and sustainability of beijing's tiered electricity price scheme[J]. Economic Research Guide, 2018, 4(7): 151-152.
[25] 曹红红. 北京市阶梯电价方案的合理性与可持续性评估研究[J]. 经济研究导刊,2018, 4(7): 151-152.
[26] GE Shaoyun, HUANG Liu, LIU Hong. Optimization of peak-valley TOU power price time-period in ordered charging mode of electric vehicle[J]. Power System Protection and Control, 2012, 40(10): 1-5.
[26] 葛少云,黄镠,刘洪. 电动汽车有序充电的峰谷电价时段优化[J]. 电力系统保护与控制,2012, 40(10): 1-5.
[27] YAN Zhijie, ZHANG Ruiping, DONG Haiying, et al. Price and period research of electric vehicles charging and discharging based on demand response[J]. Power System Protection and Control, 2018, 46(15): 16-22.
[27] 闫志杰,张蕊萍,董海鹰,等. 基于需求响应的电动汽车充放电电价与时段研究[J]. 电力系统保护与控制,2018, 46(15): 16-22.
[28] LIU Jidong, HAN Xueshan, HAN Weiji. Model and algorithm of customers' responsive behavior under time-of-use price[J]. Power System Technology, 2013, 37(10): 2973-2978.
[28] 刘继东,韩学山,韩伟吉. 分时电价下用户响应行为的模型与算法[J]. 电网技术,2013, 37(10): 2973-2978.
[29] CHEN Liangliang, ZHANG Hao, NI Feng, et al. Present situation and development trend for electric vehicle energy supply infrastructure[J]. Automation of Electric Power Systems, 2011, 35(14): 11-17.
[29] 陈良亮,张浩,倪峰,等. 电动汽车能源供给设施建设现状与发展探讨[J]. 电力系统自动化,2011, 35(14): 11-17.
[1] 雒焕强,梁丽. 基于区块链的电动汽车共享充电交易模式研究[J]. 分布式能源, 2022, 7(2): 64-69.
[2] 刘明杭,田书,梁英达. 考虑电动汽车用户满意度的微电网双层多目标优化调度[J]. 分布式能源, 2022, 7(2): 18-25.
[3] 卫帅兵,王佳伟,姚方,文福拴. 基于IGDT的光储EV混合系统鲁棒优化调度[J]. 分布式能源, 2020, 5(5): 1-7.
[4] 覃文泽,李强,姚方,文福拴. 考虑不同电价的电动汽车充电服务最优网格划分[J]. 分布式能源, 2020, 5(4): 59-68.
[5] 傅旭, 苗淼, 张祥成, 张鹏宇, 于德明. 青海电力需求的影响因素和指标分析[J]. 分布式能源, 2018, 3(3): 34-41.
[6] 梁珺,冯洪涛,唐巍,王周选. 消纳分布式电源和电动汽车的交直流混合中压配电网供电模式[J]. 分布式能源, 2018, 3(1): 39-49.
[7] 雒焕强,LUO Huanqiang. 电动汽车充换电服务模式分析[J]. 分布式能源, 2017, 2(1): 30-34.