Please wait a minute...
分布式能源  2020, Vol. 5 Issue (1): 60-64    DOI: 10.16513/j.2096-2185.DE.1901112
  应用技术 本期目录 | 过刊浏览 |
低空气密度下的风力机叶片失速控制技术
刘阳
大唐新能源陕西公司,陕西 西安 710065
Wind Turbine Blade Stall Control Technology at Low Air Density
LIU Yang
Datang New Energy Shaanxi Company, Xi'an 710065, Shaanxi Province, China
全文: PDF(1276 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要: 

低空气密度的风电场中,当风电机组在接近额定风速附近运行时,叶片根部易出现失速,严重影响机组稳定运行。为解决叶片失速问题,提出了提前变桨策略以及叶片根部加装根箱两种解决方案,采用三维数值模拟对这两种方案进行了验证。研究结果表明:采用这两种方案均能减小叶片表面失速分离;采用提前变桨控制策略可提升机组功率约1.78%,叶片根部加装根箱可提升机组功率约2.14%,加装根箱改善失速分离的效果更明显;对于已建成的风场,从经济性考虑,采用提前变桨控制策略解决叶片失速问题效果更好。

关键词: 风力机根部改型变桨失速    
Abstract

For wind farms with low air density, when the wind turbine is running near the rated wind speed, the blade roots will stall and seriously affect the stable operation of the unit. In order to solve the problem of blade stall, this paper proposes two solutions for the advance pitching strategy and the root canal root can be installed. At the same time, the two schemes are verified by three-dimensional numerical simulation. The results show that the two methods can reduce the surface separation of the blade. The advanced pitch control strategy can increase the power of the unit by about 1.78%, while the root box can increase the power of the unit by about 2.14%, that is to say the effect of installing the root box is more obvious in the improvement effect. But for the built wind field, from the economical consideration, the effect of using the advanced pitch control strategy to solve the blade stall problem is more effective.

Key Wordswind turbineroot modificationpitchstall
收稿日期: 2019-09-23
ZTFLH:  TK83  
作者简介: 刘 阳(1994—),男,本科,助理工程师,主要从事风力发电性能提升研究工作,852216659@qq.com。

引用本文:

刘阳. 低空气密度下的风力机叶片失速控制技术[J]. 分布式能源, 2020, 5(1): 60-64.
LIU Yang. Wind Turbine Blade Stall Control Technology at Low Air Density[J]. Distributed Energy, 2020, 5(1): 60-64.

链接本文:

http://der.tsinghuajournals.com/CN/10.16513/j.2096-2185.DE.1901112      或      http://der.tsinghuajournals.com/CN/Y2020/V5/I1/60

图1  叶片截面翼型图
图2  Cl和Cd随功角变化曲线
图3  不同空气密度下的功率曲线
图4  在不同桨距角下的Cp-λ曲线
图5  不同桨距角下静态功率曲线
图6  风力机叶片根部改型结构
图7  风电机组计算模型
图8  风力机轮毂周围网格
图9  改型后叶片根部网格
图10  网格无关性验证
表1  功率随桨距角变化表
图11  叶片表面极限流线分布
[1] YU Guohua. Research on stall of horizontal axis wind turbine blades[D]. Shanghai: Shanghai Jiaotong University, 2013.
[1] 俞国华. 水平轴风力机叶片失速问题研究[D]. 上海:上海交通大学,2013.
[2] BUTTERFIELD C P. Aerodynamic pressure and flow-visualization measurement from arotating wind turbine blade[R]. Solar Energy Research Inst., Golden, co(USA), 1988.
[3] LEISHMAN J G, BEDDOES T S. A generalized method for unsteady airfoil behavior and dynamic stall using the indicial method[C]//42nd Annual Forum of the American Helicopter Society, Washington DC, 1986.
[4] XING Zuoxia, CHEN Lei, SUN Hongli. Strategies study of individual variable pitch control[J]. Proceedings of the CSEE, 2011, 31(26): 131-138.
[4] 邢作霞,陈雷,孙宏利,等. 独立变桨距控制策略研究[J]. 中国电机工程学报,2011, 31(26): 131-138.
[5] YAO Xingjia, MA Jia, GUO Qingding. Individual pitch control of wind turbine based on fuzzy control[J]. Renewable Energy Resources, 2011, 29(6): 34-38
[5] 姚兴佳,马佳,郭庆鼎. 基于模糊控制的风电机组独立变桨距控制[J]. 可再生能源,2011, 29(6): 34-38.
[7] LIU Tingrui, YU Ziqing. Nonlinear flutter servo aeroelastic intelligent control of wind turbine blade stall[J]. Journal of Central South University (Natural Science Edition), 2016, 47(10): 3562-3569.
[7] 刘廷瑞,于子晴. 风力机叶片失速非线性颤振伺服气弹智能控制[J]. 中南大学学报(自然科学版), 2016, 47(10): 3562-3569.
[8] CHEN Yan, WANG Xiaohu, LIU Xiong, et al. Analysis of steady stall aerodynamic damping of horizontal axis wind turbine blade[J]. ACTA Energiae Solaris Sinica, 2011, 32(9): 1294-1302.
[8] 陈严,王小虎,刘雄,等. 水平轴风力机叶片稳态失速气动阻尼分析[J]. 太阳能学报,2011, 32(9): 1294-1302.
[9] DU Zhaohui. A 3-D stall-delay model for hawt performance prediction: Ш. Model improvement[J]. Acta Energiae Solsris Sinica., 2000, 23(2): 145-150.
[9] 杜朝辉. 水平轴风力涡轮设计与性能预估方法的三维失速延迟模型—Ⅲ.模型改进[J]. 太阳能学报,2000, 23(2): 145-150.
[10] LI Rennian, YUAN Shangke, WEI Liejiang, et al. Measurement and calculation of blade surface pressure for a wind turbine in field[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(5): 52-56.
[10] 李仁年,袁尚科,魏列江,等. 风力机叶片表面压力的计算与外场测试分析[J]. 实验流体力学,2012, 26(5): 52-56.
[11] ZHANG Qinlin. Numercal research of 3D aerodynamic performance of wind turbine blades[D]. Beijing: Tsinghua University, 2007.
[11] 张庆麟. 风力机叶片三维气动性能的数值研究[D]. 北京:清华大学,2007.
[1] 韩兵, 马杰. 基于模型参考自适应的大型风电机组独立变桨控制方法[J]. 分布式能源, 2021, 6(5): 26-32.
[2] 张真真, 吴立东, 陈晓敏, 徐志轩, 曹善桥. 基于支持向量机的风电机组变桨系统故障诊断[J]. 分布式能源, 2021, 6(3): 70-75.
[3] 王禹, 韩爽, 王其乐, 刘永前. 以变桨轴承延寿为目标的风电机组变桨策略优化研究[J]. 分布式能源, 2021, 6(2): 32-39.
[4] 孙涛, 段琦玮, 党群, 冯强. 风力机尾迹冲击在线检测算法[J]. 分布式能源, 2021, 6(1): 51-55.
[5] 王晓宇,赵夏青,许炳坤,高鑫. 风力机组风速仪测量风速与来流风速校正研究[J]. 分布式能源, 2019, 4(3): 63-68.
[6] 陶维翔. 叶尖小翼对风力机气动性能的影响分析[J]. 分布式能源, 2019, 4(2): 47-52.